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Norm

I the Euclidean norm (or just norm) of an n-vector x is

kxk =
q

x
2
1 + x

2
2 + · · · + x

2
n =

p
xTx

I used to measure the size of a vector

I reduces to absolute value for n = 1
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Properties

for any n-vectors x and y, and any scalar �

I homogeneity: k �xk = | � |kxk
I triangle inequality: kx + yk  kxk + kyk
I nonnegativity: kxk � 0

I definiteness: kxk = 0 only if x = 0

easy to show except triangle inequality, which we show later
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RMS value

I mean-square value of n-vector x is

x
2
1 + · · · + x

2
n

n
=
kxk2

n

I root-mean-square value (RMS value) is

rms(x) =

s
x

2
1 + · · · + x

2
n

n
=
kxkp

n

I rms(x) gives ‘typical’ value of |xi |
I e.g., rms(1) = 1 (independent of n)

I RMS value useful for comparing sizes of vectors of di�erent lengths
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Norm of block vectors

I suppose a,b,c are vectors

I k(a,b,c)k2 = a
T

a + b
T

b + c
T

c = kak2 + kbk2 + kck2

I so we have

k(a,b,c)k =
q
kak2 + kbk2 + kck2 = k(kak, kbk, kck)k

(parse RHS very carefully!)

I we’ll use these ideas later
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Chebyshev inequality

I suppose that k of the numbers |x1 |, . . . , |xn | are � a

I then k of the numbers x
2
1, . . . ,x

2
n

are � a
2

I so kxk2 = x
2
1 + · · · + x

2
n
� ka

2

I so we have k  kxk2/a2

I number of xi with |xi | � a is no more than kxk2/a2

I this is the Chebyshev inequality

I in terms of RMS value:

fraction of entries with |xi | � a is no more than
 

rms(x)
a

!2

I example: no more than 4% of entries can satisfy |xi | � 5 rms(x)
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Distance

I (Euclidean) distance between n-vectors a and b is

dist(a,b) = ka � bk

I agrees with ordinary distance for n = 1,2,3

a

b

I rms(a � b) is the RMS deviation between a and b
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Triangle inequality

I triangle with vertices at positions a,b,c

I edge lengths are ka � bk, kb � ck, ka � ck
I by triangle inequality

ka � ck = k(a � b) + (b � c)k  ka � bk + kb � ck

i.e., third edge length is no longer than sum of other two

ka � bk

kb � ck
ka � ck

a b

c
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Feature distance and nearest neighbors

I if x and y are feature vectors for two entities, kx � yk is the feature distance

I if z1, . . . ,zm is a list of vectors, zj is the nearest neighbor of x if

kx � zjk  kx � zik, i = 1, . . . ,m

z1

z2

z3

z4

z5

z6x

I these simple ideas are very widely used
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Document dissimilarity

I 5 Wikipedia articles: ‘Veterans Day’, ‘Memorial Day’, ‘Academy Awards’,
‘Golden Globe Awards’, ‘Super Bowl’

I word count histograms, dictionary of 4423 words

I pairwise distances shown below

Veterans Memorial Academy Golden Globe Super Bowl
Day Day Awards Awards

Veterans Day 0 0.095 0.130 0.153 0.170
Memorial Day 0.095 0 0.122 0.147 0.164
Academy A. 0.130 0.122 0 0.108 0.164
Golden Globe A. 0.153 0.147 0.108 0 0.181
Super Bowl 0.170 0.164 0.164 0.181 0
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Standard deviation

I for n-vector x, avg(x) = 1T
x/n

I de-meaned vector is x̃ = x � avg(x)1 (so avg(x̃) = 0)

I standard deviation of x is

std(x) = rms(x̃) =
kx � (1T

x/n)1kp
n

I std(x) gives ‘typical’ amount xi vary from avg(x)

I std(x) = 0 only if x = ↵1 for some ↵

I greek letters µ, � commonly used for mean, standard deviation

I a basic formula:
rms(x)2 = avg(x)2 + std(x)2
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Mean return and risk

I x is time series of returns (say, in %) on some investment or asset over
some period

I avg(x) is the mean return over the period, usually just called return

I std(x) measures how variable the return is over the period, and is called
the risk

I multiple investments (with di�erent return time series) are often compared
in terms of return and risk

I often plotted on a risk-return plot

Introduction to Applied Linear Algebra Boyd & Vandenberghe 3.14



Risk-return example
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Chebyshev inequality for standard deviation

I x is an n-vector with mean avg(x), standard deviation std(x)

I rough idea: most entries of x are not too far from the mean

I by Chebyshev inequality, fraction of entries of x with

|xi � avg(x) | � ↵ std(x)

is no more than 1/↵2 (for ↵ > 1)

I for return time series with mean 8% and standard deviation 3%, loss
(xi  0) can occur in no more than (3/8)2 = 14.1% of periods
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Cauchy–Schwarz inequality

I for two n-vectors a and b, |aT
b|  kakkbk

I written out,

|a1b1 + · · · + anbn | 
⇣
a

2
1 + · · · + a

2
n

⌘1/2 ⇣
b

2
1 + · · · + b

2
n

⌘1/2

I now we can show triangle inequality:

ka + bk2 = kak2 + 2a
T

b + kbk2
 kak2 + 2kakkbk + kbk2
= (kak + kbk)2
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Derivation of Cauchy–Schwarz inequality

I it’s clearly true if either a or b is 0

I so assume ↵ = kak and � = kbk are nonzero

I we have

0  k �a � ↵bk2
= k �ak2 � 2(�a)T (↵b) + k↵bk2
= �2kak2 � 2�↵(aT

b) + ↵2kbk2
= 2kak2kbk2 � 2kak kbk(aT

b)

I divide by 2kak kbk to get a
T

b  kak kbk
I apply to �a, b to get other half of Cauchy–Schwarz inequality
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Angle

I angle between two nonzero vectors a, b defined as

\(a,b) = arccos
 

a
T

b

kak kbk

!

I \(a,b) is the number in [0,⇡] that satisfies

a
T

b = kak kbk cos (\(a,b))

I coincides with ordinary angle between vectors in 2-D and 3-D
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Classification of angles

✓ = \(a,b)

I ✓ = ⇡/2 = 90�: a and b are orthogonal, written a ? b (aT
b = 0)

I ✓ = 0: a and b are aligned (aT
b = kakkbk)

I ✓ = ⇡ = 180�: a and b are anti-aligned (aT
b = �kak kbk)

I ✓  ⇡/2 = 90�: a and b make an acute angle (aT
b � 0)

I ✓ � ⇡/2 = 90�: a and b make an obtuse angle (aT
b  0)
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Spherical distance

if a, b are on sphere of radius R, distance along the sphere is R\(a,b)

a

b

0
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Document dissimilarity by angles

I measure dissimilarity by angle of word count histogram vectors

I pairwise angles (in degrees) for 5 Wikipedia pages shown below

Veterans Memorial Academy Golden Globe Super Bowl
Day Day Awards Awards

Veterans Day 0 60.6 85.7 87.0 87.7
Memorial Day 60.6 0 85.6 87.5 87.5
Academy A. 85.7 85.6 0 58.7 85.7
Golden Globe A. 87.0 87.5 58.7 0 86.0
Super Bowl 87.7 87.5 86.1 86.0 0
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Correlation coe�cient

I vectors a and b, and de-meaned vectors

ã = a � avg(a)1, b̃ = b � avg(b)1

I correlation coe�cient (between a and b, with ã , 0, b̃ , 0)

⇢ =
ã

T
b̃

kãk kb̃k

I ⇢ = cos \(ã, b̃)
– ⇢ = 0: a and b are uncorrelated

– ⇢ > 0.8 (or so): a and b are highly correlated

– ⇢ < �0.8 (or so): a and b are highly anti-correlated

I very roughly: highly correlated means ai and bi are typically both above
(below) their means together
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Examples
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Examples

I highly correlated vectors:
– rainfall time series at nearby locations
– daily returns of similar companies in same industry
– word count vectors of closely related documents

(e.g., same author, topic, . . . )
– sales of shoes and socks (at di�erent locations or periods)

I approximately uncorrelated vectors
– unrelated vectors
– audio signals (even di�erent tracks in multi-track recording)

I (somewhat) negatively correlated vectors
– daily temperatures in Palo Alto and Melbourne

Introduction to Applied Linear Algebra Boyd & Vandenberghe 3.26


