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Matrices

> a matrix is a rectangular array of numbers, e.g.,

0 1 =23 0.1
1.3 4 =01 O
41 -1 O 1.7

> its size is given by (row dimension) X (column dimension)
e.g., matrix above is 3 x 4

> elements also called entries or coefficients
> Bjjis i,j element of matrix B
» [ is the row index, j is the column index; indexes start at 1

» two matrices are equal (denoted with =) if they are the same size and
corresponding entries are equal
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an m X n matrix A is
> fallifm > n
» wideifm<n

> squareifm=n
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Column and row vectors

» we consider an n X 1 matrix to be an n-vector
» we consider a 1 x 1 matrix to be a number

» a 1 X n matrix is called a row vector, e.g.,
[ 12 -03 14 2.6 ]

which is not the same as the (column) vector

1.2 7
—-0.3

1.4

2.6
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Columns and rows of a matrix

> suppose A is an m X n matrix with entries A;;fori =1,...,m,j=1,...

> its jth column is (the m-vector)

Ay

. Amj _
> its ith row is (the n-row-vector)
[Ail Am]

> slice of matrix: Ay, s isthe (g —p + 1) X (s —r + 1) matrix

Apr Ap,r+1 T Aps
Ap+1,r Ap+1,r+1 e Ap+1,s
Ap:q,r:s —
Aqr Aq,r+1 T Aqs
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Block matrices

» we can form block matrices, whose entries are matrices, such as

[a ]

where B, C, D, and E are matrices (called submatrices or blocks of A)
> matrices in each block row must have same height (row dimension)
> matrices in each block column must have same width (column dimension)

> example: if
B:[o 2 3], c:[—l], D:H § ;] E:[

then
—1

B C 0 2 3
p £ |= 2 2 1 4
1 3 5 4
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Column and row representation of matrix

» A is an m X n matrix

> can express as block matrix with its (m-vector) columns ay,...,a,
A:[al a - an]

» or as block matrix with its (n-row-vector) rows by,...,b,,
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Examples

> image: X;; is i,j pixel value in a monochrome image
> rainfall data: A;; is rainfall at location i on day j
> multiple asset returns: R;; is return of asset j in period i

> contingency table: A;; is number of objects with first attribute i and second
attribute j

> feature matrix: X;; is value of feature i for entity ;

in each of these, what do the rows and columns mean?
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Graph or relation

> a relation is a set of pairs of objects, labeled 1,. . . ,n, such as
R =1{(1,2), (1,3), (2,1), (2,4), (3,4), (4, 1)}

> same as directed graph

> can be represented as n X n matrix with A;; = 1if (i,j) € R

0 1 1 0]

I 0 0 1

A= 0 0 0 1
I 0 0 O
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Special matrices

> m X n zero matrix has all entries zero, written as 0,,,x,, or just O

> identity matrix is square matrix with I;; = 1 and [;; = O for i # j, e.g.,

o 7]

> sparse matrix: most entries are zero

— examples: 0 and
— can be stored and manipulated efficiently
— nnz(A) is number of nonzero entries

o = O O
—_—O O O

oSO O =
o O = O
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Diagonal and triangular matrices

> diagonal matrix. square matrix with A;; = O when i # j

» diag(ay,...,a,) denotes the diagonal matrix with A;; = a; fori =1,...

> example:
02 O 0
diag(0.2,-3,1.2) = 0 -3 0
0O 0 1.2
> lower triangular matrix: A; = 0 fori <
> upper triangular matrix: A;; = 0 for i > j
> examples:
I -1 0.7
0 1.2 —1.1 | (upper triangular), [ :82 32
0 0 3.2 ' '

Introduction to Applied Linear Algebra Boyd & Vandenberghe

] (lower triangular)

6.11



Transpose

> the transpose of an m X n matrix A is denoted A’, and defined by
ADy=A;, i=1,...,n, j=1,...,m

» for example,
T

[0 7 3
14 0 1

» transpose converts column to row vectors (and vice versa)

W 3O
- o A

» AT =A

Introduction to Applied Linear Algebra Boyd & Vandenberghe 6.12



Addition, subtraction, and scalar multiplication

> (just like vectors) we can add or subtract matrices of the same size:
(A+B)ij :Aij+Bij’ i=1,...,m, j= 1,...,n

(subtraction is similar)

» scalar multiplication:
(@A) =aAy, 1=1,....m, j=1,...,n
> many obvious properties, e.g.,

A+B=B+A, aA+B) =aA+aB, A+B!=4"+B
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Matrix norm

» for m X n matrix A, we define

1/2
m n
_ 2
A=) > A
i=1 j=1
» agrees with vector norm whenn = 1
> satisfies norm properties:
Al = |e|l|A]
1A + Bl < [|All + || Bl
IAll = O

IA]|l =0onlyifA =0

» distance between two matrices: ||A — B||
> (there are other matrix norms, which we won'’t use)
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Matrix-vector multiplication
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Matrix-vector product

> matrix-vector product of m X n matrix A, n-vector x, denoted y = Ax, with
Vi :Al-lxl + - +A,—nxn, [ = 1,. ...m

» for example,

2
0 2 -1 P I
-2 1 1 | -4
-1
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Row interpretation

» y = Ax can be expressed as

Vi :biTx, i=1,....m
where b1 ,...,b, are rows of A
» so y = Axis a ‘batch’ inner product of all rows of A with x

» example: Al is vector of row sums of matrix A
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Column interpretation

» y = Ax can be expressed as
y =Xx14) +Xxpay + - -+ Xpay
where ay,. .. ,a, are columns of A

» s0 y = Ax is linear combination of columns of A, with coefficients x1,...,x,
> important example: Ae; = g;

» columns of A are linearly independent if Ax = O implies x = 0
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Examples
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General examples

» Ox =0, i.e., multiplying by zero matrix gives zero
> [x = x, i.e., multiplying by identity matrix does nothing
> inner product a’ b is matrix-vector product of 1 X n matrix a’ and n-vector b

» X = Ax is de-meaned version of x, with

' 1-1/n -1/n -+ —=1/n
—1/n 1-1/n --- —1/n
A= .
—l./n —-1/n -+ 1 —.l/n |
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Difference matrix

» (n— 1) X n difference matrix is

[ —1
0

0
0

y = Dxis (n — 1)-vector of differences of consecutive entries of x:

» Dirichlet energy: |Dx||? is measure of wiggliness for x a time series
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Return matrix — portfolio vector

» Ris T X n matrix of asset returns

> R;; is return of asset j in period i (say, in percentage)
> n-vector w gives portfolio (investments in the assets)
» T-vector Rw is time series of the portfolio return

» avg(Rw) is the portfolio (mean) return, std(Rw) is its risk
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Feature matrix — weight vector

» X =[x; --- xy]isn XN feature matrix

> column x; is feature n-vector for object or example j
> Xj; is value of feature i for example j

> n-vector w is weight vector

» s = X"w is vector of scores for each example; s; = ijw
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Input — output matrix

> A is m X n matrix

> y=Ax

> n-vector x is input or action

> m-vector y is output or result

> A;j is the factor by which y; depends on x;
> A;j is the gain from input j to output i

> e.g., if A is lower triangular, then y; only depends on xi,. . .,Xx;
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