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State sequence

» sequence of n-vectors xi,xa,. ..

» t denotes time or period

> Xx; is called state at time ¢; sequence is called state trajectory

> assuming t is current time,

— Xy is current state
— X;_1 Is previous state
— X;41 IS next state

> examples: x; represents
— age distribution in a population
— economic output in n sectors
— mechanical variables
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Linear dynamics

> linear dynamical system:
X1 =Awxy, t=1,2,...
» A; are n X n dynamics matrices
> (A4)ij(x;); is contribution to (x;41); from (x;);
» system is called time-invariant if A, = A doesn’t depend on time

» can simulate evolution of x; using recursion x;.1 = Ax;
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Variations

> linear dynamical system with input

Xt+1 =Atxt+Btu;+C;, [ = 1,2,...

— U is an input m-vector
— By is n X m input matrix
— ¢y is offset

» K-Markov model:

Xt+1 :Alxt+"'+Ath_K+1, t:K,K+1,

— next state depends on current state and K — 1 previous states
— also known as auto-regresssive model
— for K = 1, this is the standard linear dynamical system x;, | = Ax;
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Population dynamics
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Population distribution

> x; € R gives population distributioninyeart = 1,...,T
> (x;); is the number of people with age i — 1 in year ¢ (say, on January 1)
> total population in year ¢ is 17 x;

> number of people age 70 or older in year ¢ is (079, 130)” x;
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Population distribution of the U.S.

(from 2010 census)
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Birth and death rates

> birth rate b € R'", death (or mortality) rate d € R'"
> b; is the number of births per person with age i — 1

> d; is the portion of those aged i — 1 who will die this year
(we'll take djgg = 1)

» b and d can vary with time, but we’ll assume they are constant
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Birth and death rates in the U.S.

Approximate birth rate (%)
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Dynamics

> let’s find next year’s population distribution x;.1 (ignoring immigration)

» number of 0-year-olds next year is total births this year:

» number of i-year-olds next year is number of (i — 1)-year-olds this year,

minus those who die:

(Xr41)1 = bTxt

(X+1)iv1 = A =di)(x)i, 1=1,...,99

> X:+1 = AXx;, Where
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Predicting future population distributions

predicting U.S. 2020 distribution from 2010 (ignoring immigration)
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Epidemic dynamics

Introduction to Applied Linear Algebra Boyd & Vandenberghe 9.12



SIR model

> 4-vector x; gives proportion of population in 4 infection states

Susceptible:  can acquire the disease the next day
Infected: have the disease

Recovered:  had the disease, recovered, now immune
Deceased: had the disease, and unfortunately died

» sometimes called SIR model

> e.g., x; = (0.75,0.10,0.10,0.05)
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Epidemic dynamics

over each day,

» among susceptible population,

— 5% acquires the disease
— 95% remain susceptible

» among infected population,
— 1% dies
— 10% recovers with immunity

— 4% recover without immunity (i.e., become susceptible)
— 85% remain infected

» 100% of immune and dead people remain in their state

» epidemic dynamics as linear dynamical system
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Simulation from x; = (1,0,0,0)
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