ASE3093 Automatic Control: Homework #3

1) Block-diagram algebra. For each block diagram below, reduce the diagram and obtain the transfer function Y(s)/U(s).

b)

a)

c)

1

2) Canonical forms. Determine the transfer function Y(s)/U(s) for each of the following block diagrams. All constants a_i and b_i are real numbers.

b)

a)

c)

3) Satellite attitude control. We wish to analyse the attitude-control system of a satellite. The control input is a thrust F_T applied at a distance r from the satellite's centre of mass, and a disturbance force F_d acts in the same direction. The rotational dynamics are

$$I\ddot{\theta} = 2r(F_T + F_d),$$

where ${\cal I}$ is the moment of inertia.

To achieve the control objective, the attitude angle θ is measured and a proportional–derivative (PD) controller of the form

$$K(s) = K(1 + Ts)$$

is used in a unity-feedback configuration.

a) For the block diagram shown below, find the closed-loop transfer functions $\theta(s)/\theta_d(s)$ and $\theta(s)/F_d(s)$.

b) The closed-loop performance is governed by K and T. Determine conditions on K and T such that the closed-loop damping ratio is at least ζ_d with $0 < \zeta_d < 1$.

4) Multiple inputs. Answer the following questions for the system below.

- a) Derive the transfer functions $G_r(s) = \frac{y(s)}{r(s)}$ and $G_d(s) = \frac{y(s)}{d(s)}$.
- b) Can the output be written as $y(s) = G_r(s)r(s) + G_d(s)d(s)$? Explain why.
- c) With r(t) = 0 and $d(t) = A \sin \omega t$, find y(t).