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ASE3093 Automatic Control: Homework #4

1) Root locus. Draw the root locus for the following systems, appropriately indicating
departure/arrival angles, asymptotes, and the center of the asymptotes. Assume the
controller K is a positive constant (K > 0). Analyze the stability of the closed-loop
system.
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2) Collocated vs. noncollocated systems. Consider a system in which two masses m1 and
m2 are connected by a spring with constant k, and a control force u is applied to
m1. Given m1 = 10, m2 = 1, and k = 100, answer to the following questions:

x1 x2

u m1 m2

k

a) Assume that a position sensor is attached to m1, and the measured signal x1 is
used for computing the control input u (this configuration is called collocated).
Derive the transfer function Gc(s) = x1(s)/u(s).

b) Assume that a position sensor is attached to m2, and the measured signal x2

is used for computing the control input u (this configuration is called noncollo-
cated). Derive the transfer function Gnc(s) = x2(s)/u(s).

c) Show that the collocated system Gc(s) can be stabilized using a PD controller.
In contrast, show that no PD controller can stabilize the noncollocated system
Gnc(s).

3) Two-parameter system. In the feedback loop shown below, K > 0 denotes the con-
troller gain and L > 0 is a parameter of the plant. Investigate how the location of
the closed-loop poles changes as K and L vary.
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−

a) With the plant parameter fixed at L = 50, sketch the root locus of the closed-
loop poles in the complex plane as the controller gain K varies over 0 < K < ∞.

b) With the controller gain fixed atK = 50, sketch the root locus of the closed-loop
poles in the complex plane as the plant parameter L varies over 0 < L < ∞.
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4) Course correction autopilot. The following figure represents a course autopilot for
a vessel system. The output variable θ and control input δ represent the heading
angle and fin deflection, respectively. The objective is to design a controller K(s)
that satisfies the following two performance requirements:

• Req.#1. The autopilot system must track step and ramp reference commands
θc with zero steady-state error.

• Req.#2. The closed-loop damping ratio should be close to 1/
√
2.

K(s) G(s)

−

θc θ
δ
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δ

북쪽

동쪽

The heading angle dynamics with respect to the fin deflection are described by:

G(s) =
s+ 1

s2(s− 0.1)
,

and the following controller structures are considered for K(s):

• P control: K(s) = K,

• PI control: K(s) = K

(
1 +

3

s

)
,

• PD control: K(s) = K (2s+ 1).

a) Among the candidate controllers, select the one that satisfies Req.#1, and
justify your answer.

b) For the selected controller in part (a), determine a gain K such that Req.#2
is satisfied. You may use computational tools as necessary.
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