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ASE3093 Automatic Control: Homework #6

1) Runway approach problem. Your job is to design a controller that computes the
acceleration command, ac, from the lateral deviation, x, and the lateral velocity, v,
that is, to choose Kv and Kx, and to check the robustness of your design. The block
diagram describing the dynamics of the considered system is shown below.
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Your controller computes the acceleration command, ac, which is sent to the autopi-
lot that somehow generates the actual acceleration response, a, through Gap(s) =
a(s)/ac(s). For now, assume that the autopilot is ideal, Gap(s) = 1.

a) Find Kv and Kx that place the closed loop pole at s = −1 ± j, so that the
closed loop bandwidth is 2 and the closed loop damping is 1/

√
2.

Now fix Kv and Kx by the ones you found in a), and we assume that Kx is disturbed
by a scale factor ξ > 0, so the new position gain can be ξKx while the velocity gain
stays the same as Kv.

b) For what range of ξ, is the closed loop system stable? You may use computa-
tional tools to check the stability margin of your design.

A more realistic autopilot can be modelled by a third order system as

Gap(s) =
a(s)

ac(s)
=

pω2

(s+ p)(s2 + 2ζωs+ ω2)

where we let ω = 4, ζ = 0.7, and p = 6.

c) Under presence of this autopilot model, for what range of ξ, is the closed loop
system stable? You will need to use the computational tools to check the stability
margin of your design.
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2) Nyquist stability criterion. Consider the following double integrator system

G(s) =
1

s2

with a PID control

K(s) = 2(1 +
1

s
+ s)

K(s) G(s)

−

a) What is the magnitude and the phase of K(s)G(s) at ω = 1 (s = j)?

b) Carefully draw the Bode diagrams. You may check your results with the bode()
function.

c) What is the gain margin and the phase margin of your control system? You
may check your results with the margin() function. Your answer may look
unfamiliar. What does that mean?

d) Carefully draw the Nyquist diagram with extra caution at around ω → 0 (the
infinite radius parts in your diagram). Unfortunately, using the nyquist() func-
tion won’t help in this specific problem.

e) Check the closed loop stability from the diagram you obtained in d). What is
N (the number of the clockwise encirclements around −1), and Z (the number
of unstable poles in your closed loop system)? Is the closed loop system stable?

f) Check the stability result that you’ve obtained in e) by using computational
tools. You may use the rlocus() function or whatever (e.g., pole(), eig(),
et cetera), to check your closed loop pole locations.

g) Your answer in f) should correspond to what you’ve got in d)-e). If so, you are
good. If not, go back and think about it, or discuss with your friends.
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