ASE6029 Linear Optimal Control Homework #1

- 1) Diagonalization. Show that a matrix with distinct eigenvalues is diagonalizable.
- 2) Symmetric matrices.
 - a) Show that a symmetric matrix has real eigenvalues.
 - b) Show that a symmetric matrix with distinct eigenvalues is orthogonally diagonalizable.
 - c) Show that a symmetric matrix is orthogonally diagonalizable.
 - d) Say the eigenvalues of $A \in \mathbb{S}^n$ are ordered as $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$. Show that

$$\lambda_n \|x\|^2 \le x^T A x \le \lambda_1 \|x\|^2$$

and explain when the inequalities are tight.

- 3) Range and Kernel of a symmetric matrix. Show that the range (image) and the kernel (null space) of A are disjoint and orthonal. Furthermore the union of them form \mathbb{R}^n .
- 4) Simultaneous diagonalizability. Two matrices A and B are said to be simultaneously diagonalizable if there exists an invertible matrix T such that both $T^{-1}AT$ and $T^{-1}BT$ are diagonal. Now suppose that A and B are simultaneously diagonalizable.
 - a) Show that they commute:

$$AB = BA$$

b) Show that the product rule for matrix exponentials holds in this case..

$$e^{A+B} = e^A e^B$$

5) Stability of a switched linear system with Hurwitz modes. Consider the time-varying linear system

$$\dot{x}(t) = A(t) x(t), \qquad A(t) = A_{\sigma(t)},$$

where $\sigma:[0,\infty)\to\mathbb{N}$ is a piecewise-constant switching signal with switching times $0< t_1< t_2<\cdots$, so that

$$A(t) = \begin{cases} A_0, & 0 \le t < t_1, \\ A_1, & t_1 \le t < t_2, \\ \vdots & \end{cases}$$

Assume that each mode matrix $A_i \in \mathbb{R}^{n \times n}$ is Hurwitz (all eigenvalues lie in the open left half-plane). Is the switched system necessarily (globally) asymptotically stable under *arbitrary* switching, *i.e.*, does $x(t) \to 0$ as $t \to \infty$ for every initial condition and every switching signal?

- 6) Complex eigenvectors. Consider a linear dynamical system $\dot{x} = Ax$, where $Av = \lambda v$, with $v \neq 0$ and complex $\lambda \in \mathbb{C}$.
 - a) Show that the complex trajectory

$$x(t) = ae^{\lambda t}v,$$

for $a \in \mathbb{C}$ satisfies $\dot{x} = Ax$.

b) Show that the following real trajectory

$$x(t) = e^{\sigma t} \begin{bmatrix} v_{\rm re} & v_{\rm im} \end{bmatrix} \begin{bmatrix} \cos \omega t & \sin \omega t \\ -\sin \omega t & \cos \omega t \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \end{bmatrix}$$

where $v = v_{re} + jv_{im}$, $\lambda = \sigma + j\omega$, and $a = \alpha - j\beta$.