Boolean classification

» embed the two classes as y = +1

» use RERM to fit, with various loss functions and regularizers

» validate using Neyman-Pearson metric on test data, kB, + Efp

» « is our relative distaste for mistaking a positive example

» for kK = 1, reduces to error rate
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Loss functions for Boolean classification

» y can only take values —1 or 1, so to specify £, we only need to give two functions of §:

» £(f§,—1) is how much § irritates us when y = —1

» £(7,1) is how much § irritates us when y = 1
» we will define £ via a penalty function p: R - R

> l(:[], _1) = p(ﬂ)
> £(3,1) = kp(—9) = wl(~9,-1)

» p(7) should be small for § negative
» p(7) should be larger § positive

» « gives our relative dislike of mistaking y =1



Square loss
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> £3,-1)=(1+9)?° £45,1)=rt(-9,~1) = &(1-9)’
» doesn't satisfy desired properties, e.g., £(—3, —1) should be very small, not large

» ERM is least squares problem, and so, easy to solve



Neyman-Pearson loss

» Neyman-Pearson loss is

1 g>0
> ZNP(gr_l) = :lf B
0 <0
N . k §<0
» NP(g,1) = kiNP(g, 1) =
(9,1) (9,-1) 0 93>0
3 3
ZNP(gi_l) ZNP(gil)
2 2
1 1
0 0
-3 -2 -1 0 1 2 3 -3 -2 -1 0



Neyman-Pearson loss

» it's the same as our performance metric, which would seem good
» but it's very hard to minimize £(6), since it's discontinuous, has zero derivative almost everywhere
» surprisingly, we get better performance using different loss functions, that are also easier to minimize

» if they’re convex, and the regularizer is convex, we can solve the RERM problem efficiently



Sigmoid loss
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> £(9,-1) £39,1) = wb(—9,-1)

T 1ted T 1ted
» differentiable approximation of Neyman-Pearson loss

» but not convex



Logistic loss
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> £(7,—1) =log(1+e¥), £(9,1)=rl(—7,—1) = klog(l+e?)

» differentiable and convex approximation of Neyman-Pearson loss
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Hinge loss

30 30
25 Z('g,—l) 25
20 20
15 15
10 10
05 05
0.0 0.0
-3 -2 -1 0 1 2 3 -3
]

> Z(g, _1) = (1 + g)-‘rv Z(gr 1) = m@(—ﬁ, _1) = K’(l - g)+

» another convex approximation of Neyman-Pearson loss
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Hubristic loss
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» define the hubristic loss (huber + logistic) as
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Boolean classifiers
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Boolean classifiers with names

» least squares classifier uses square loss, square regularizer
» logistic regression uses logistic loss, any regularizer, as in, logistic regression with £; regularizer

» support vector machine (SVM) uses hinge loss, square regularizer
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Example
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Support vector machine
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» decision boundary is Tz =0
» black lines show points where 8Tz = +1

» what is the training risk here?



Example: Australian weather

» we have measurements of multiple attributes of weather at multiple locations in Australia
» over 10 years from 2007 to 2017

» 142,193 records

» given measurements from today, predict if it will rain tomorrow

» removing records with missing data leaves 112,925 records

» data from Australian weather stations, downloaded from
https://www.kaggle.com/jsphyg/weather-dataset-rattle-package
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Example: Australian weather

» numeric fields

» MinTemp, MaxTemp, Rainfall, WindGustSpeed, WindSpeed9am, WindSpeed3pm, Humidity9am,
Humidity3pm, Pressure9am, Pressure3pm, Temp9am, Temp3pm

» categorical fields

» location (44 possible locations)
» WindGustDir, WindDir9am, WindDir3pm (16 compass points)
» RainToday (YES or NO)

» additional field: date
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Some data
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here we look at a random 2% of the data, for a few features

blue points indicate next day rainfall
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Embedding

» for z = ¢(u)
» embed 12 numeric fields via identity map
» embed 3 wind directions as one-hot (16 compass points)
» embed RainToday as {—1,1}
» do not use date or location fields (did not improve validation performance)
» standardize
» add constant feature

» results in z € R%2

» embed y = ¢(v) as {—1,1} where v is RainTomorrow
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ERM

» use logistic loss function
Z(gr _1) = ].Og(l + e‘_L?)]
» linear predictor § = 6"z

» and square regularization r(8) = [|62.||3

£9,1) = klog(1+e7?)
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ROC

randomly split 80/20 into train/test sets
test and train results very similar (test in red, train in blue)
minimum probability of error = 16% Cp/n

rain frequency = 22%, so a predictor that always
predicts no rain will achieve 22% error
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Important features
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» important feature: Pressure9am - Pressure3pm (¢ = 10,11)
» rapidly falling pressure indicates a storm is coming
» note 16 one-hot embedded values for WindDir9am (z = 30, ..., 45) all sum to one

» retraining with 6 features: MinTemp, MaxTemp, WindGustSpeed, Humidity3pm, Pressure9am, Pres-
sure3pm achieves 16.5% probability of error
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