Categorical outputs

» we consider categorical raw outputs, v € V, V a finite set
» V ={v1,...,uk} is the label set; v; are called classes or labels or categories

» called Boolean for K = 2, e.g.,
» V = {TRUE, FALSE}
» V = {POSITIVE, NEGATIVE}
» called multi-class for K > 2, e.g.,
» V = {YES, MAYBE, NO}
» V = {ALBANIA, AZERBAIJAN, ...}
» V = {HINDI, TAMIL, ...}
» V = set of English words in some dictionary

» V = set of m! possible orders of m horses in a race

» we often take V = {1,..., K}



Classifiers

» predicting a categorical raw output v € V given a raw input u € U is called classification
» called Boolean classification when K = 2

» called multi-class classification when K > 2

» predictor has form G : U — V

» 9 = G(u) is our prediction of v, given u

» in this context, G is called a classifier

» roughly speaking, classifier classifies all w € U into those with predictions G(u) = v;, 1 =1,..., K



Example

E % “
-1.

» U=R*V={-1,1}

» classifier shown with data set u!,...,u™ v',...,v™ red = —1 and blue = 1



Applications

» medical diagnosis

» u contains patient attributes, test results

» Boolean v encodes disease status (has disease or not), or multi-class, e.g., V = {covip19, FLU, coLD}
» advertising

» u contains attributes of a person and an ad shown to them

» v encodes whether they buy the item, click on the ad, etc..
» fraud detection

» u contains attributes of a proposed transaction

» v €V = {FRAUD, VALID}
» image classification

» wu is an image

» v €V = {LION, TREE, BUS, ...}



Applications

» spam filter
» wu contains attributes of an email message
» v €V = {SPAM, HAM}
» sports forecasting
» u contains attributes of a game or match, team A versus team B
» v encodes game winner, V = {A, B, TIE}
» topic detection
» u is an article or news item
» v encodes topic, e.g.V = {POLITICS, SPORTS, BUSINESS, ...}
» sentence parsing

» u is a sentence

» v encodes grammatical parsing of sentence (a labeled tree)



Performance metrics for Boolean classification



Error rate

b we are given a data set u!,...,u", vi,..., 0"

» predictions are 7 = G(u'),i=1,...,n
» prediction is correct if © = v, wrong or errorif ¥ # v

» error rate E is fraction of errors,
1 . .
E — i ~7 k2
L1 £
(JA4] is the number of elements of a finite set A)

» error rate is the simplest performance metric for a classifier

» we can validate a classifier by evaluating its error rate on unseen or held back (test) data



The two types of errors in Boolean classification

» consider Boolean classification with V = {—1, 1}
» class v = —1 is called negative, v = 1 is called positive

» only four possible values for the data pair 9, v:
» true positiveif 9 =1 and v =1
» true negative if 9 = —1 and v = —1
» false negative or type Il errorif # = -1l and v =1

» false positive or type | errorif 4 =1 and v = —1



Boolean confusion matrix

» for a predictor and a data set the confusion matrix is

c— # true negatives # false negatives} - [C’tn

" | # false positives  # true positives Ctp

» Cin + Ctn + Cp + Ctp = n (total number of examples)
» N, = Cin + Cg is number of negative examples

» N, = Cs + Cip is number of positive examples

» diagonal entries give numbers of correct predictions

» off-diagonal entries give numbers of incorrect predictions of the two types

Cfn
Cip

|
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Some Boolean classification performance metrics

. . C C
» confusion matrix { o fn }

Cf P Ct P

» the basic error measures:
» false positive rate is Cgp /.
» false negative rate is Cg,/n

» error rate is (Cgn + Cpp)/n.

» error measures some people use:
B true positive rate or sensitivity or recall is Ctp/Np  (fraction of true positives we correctly guess)
» false alarm rateis Cg /N, (fraction of true negatives we incorrectly guess as positive)
» specificity or true negative rate is Cin /N,  (fraction of true negatives we correctly guess)

» precision is Ctp/(Ctp + Csp)  (fraction of our positive guesses that really are positive)
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Neyman-Pearson metric

» we have two metrics or objectives for a Boolean classifier: false positive and false negative rate

» we want both small

» to obtain a single (number) metric, we combine them with a weight to get the Neyman-Pearson metric
EN? = kCt/n + Cro/n

» k > 0 sets how much we care about false negatives, compared to false positives

p» for k > 1, false negatives upset us more than false positives
» for k < 1, false negatives upset us less than false positives

p for k =1, ENP = E, the overall error rate
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False positive and false negatives

» Boolean classifier has two objectives: false positive rate
and true positive rate

» plot the performance of each classifier

» Gs is worse than G2 (more false positives and more false
negatives)

» Gi has fewer false negatives than G2, but more false
positives

Ci/n

0.2

Cin/n
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ROC curve

» red points are Pareto optimal; no other classifier is better
in both Cf, and Ct

» set of all Pareto optimal points is called the ROC or
operating characteristic

» ROC stands for Receiver Operating Characteristic (from
WWII, never spelled out)

» it is common to develop multiple classifiers, which trade off
these two error rates

CfP/n .Gl

Cin/n
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Neyman-Pearson error

» we can measure performance in different directions in this
plane .

» let kK > 0 be how much more false negatives irritate us than Cr/n

false positives

» instead of using the error-rate as a performance metric, use
the weighted-sum
KCin/n + Cg/n

» a scalarization of two objectives called the Neyman-Pearson
error

» when k = 1, the Neyman-Pearson error is the error rate

» each green line shows points where KCf,/n + Cp /1 is
constant; slope of dashed lines is —«
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Example

» red points have v = —1,
blue have v = 1 U2 v‘.

» false negative are blue points
for which the classifier would
predict red

. \
N [T
EEEEEEC
(24 1]

» plot 1 has C = (16 59 | _------.‘
e

(32 8
» plot 2 has C = 8 B3
[38 23]
>p|ot3hasC__2 37 |

‘-
3.
4 -

N
i}
.
.
.
.




Performance metrics for multiclass classification
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Error types

> there are K? possible values of (#,v), since 9,v € {v1,...,vx}

» U = v;, v = v; means the true value is v;, and we predict v;

» prediction is correct when v; = v;, and an error when v; # v;

» we further distinguish K(K — 1) types of errors, one for each pair ¢, 7 with 1 # j
» for 2 # 3, ¥ = v;, v = v; means we mistook v; for v;

» ie., the value is v;, but we guess v;
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Confusion matrix

» K x K confusion matrix is defined by
Ci; = # records with ¥ = v; and v = v;
(warning: some people use the transpose of C)
» entries in C add up to n
» column sums of C give number of records in each class in the data set
» Ci; is the number of times we predict v; correctly
» Cij for ¢ # j is the number of times we mistook v; for v;
» there are K(K — 1) different error rates, E;; = Cij/n, 1 # J

» the overall error rate is B = 5., Cij/n=>) . By
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Example

» red = 1, green = 2, blue =3

39 5 1

» confusionmatrix C= | 1 34 2
0 1 17

0 0.05 0.01

» error rates £ = | 0.01 0 0.02

0 0.01

» error rate = 10%
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Neyman-Pearson error

» E; = Ei# Cjj is number of times we mistook v; for another class
» E;/n is the error rate of mistaking v;
» we will scalarize these K error rates using a weighted sum

» the Neyman-Pearson error is

K
Z ki B; = Z k;Cij/n
j=1 i£]

where k is a weight vector with nonnegative entries
» «; is how much we care about mistaking v;

» for k; = 1 for all 2, Neyman-Pearson error is the error rate
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