Constant predictors

» we explore the simplest possible predictor, which is constant

=ge(z) =6 €R™

v
<

» a linear regression model with ¢(u) =1

» doesn’t depend on u, which in fact we don’t even need

» we'll use ERM to fit 6 to data

» we don't need regularization since the predictor is (completely) insensitive

» different losses lead to different predictors



Losses

b we are given data y*,...,y™ € R™
» we have a loss function £: Rx R — R

» £(3,y) quantifies how badly § approximates y
» typical losses for scalar y (m = 1):

» quadratic loss: £(§,y) = (§ — y)?

» absolute loss: £(4,y) = |§ — y|

» fractional loss: for §,y > 0,

" g Y N
Lg,y) = maX{; -1, 7 1} = exp(|log § — logy|) — 1

(often scaled by 100 to become percentage error)

» typical loss for vector y (m > 1): quadratic loss, £(4,y) = ||J — yl|3



ERM

» we choose 6 to minimize empirical risk, £(6) = £ 3" £(6, )

n

» we'll be able to solve this minimization problem for the losses above, and others

» we'll recover some reasonable choices of a constant approximation of the data, such as mean and median



Convexity

» a function f: R® — R is convex if it for all w,z € R* and all a € [0, 1]
flaw+ (1 -a)z) <af(w)+ (1 —a)f(z)

» this means the function ‘curves upward’ or has positive curvature

» in terms of derivatives, convexity can be expressed as

» (if f'(w) exists) f'(w) is nondecreasing (as w increases)

» (if f"(w) exists) f""(w) > 0 for all w

convex nonconvex

06 06
04 0.4
02 02

0.0
0.0



Minimizing convex functions — optimality conditions

for a convex function f

» if f is differentiable f, w minimizes f if and only if Vf(w) =0

for convex f: R —= R (i.e,, k =1)

» w minimizes f if and only if f' (w) <0, fi(w) >0
» fli(w) is the righthand derivative, fi(w) = lim¢—0,:>0 M

» f'(w) is the lefthand derivative, f' (w) = lim:—0t<0 M
» these both exist, even if f is not differentiable
» if f'(w) exists, then f' (w) = fi(w) = f'(w)

» simple example: w = 0 minimizes f(w) = |w|, since f_(0) = —1, f1(0) =1



ERM and convexity

» for the losses functions listed above (and many others), £(%,y) is a convex function of §
» an average of convex functions is convex, so £(8) is convex
» so the optimality conditions above tell us when 8 minimizes £(8)

» for scalar y, & minimizes £(6) when £’ (6) <0, £/, (6) >0



Square loss



ERM with square loss

» for square loss £(4,y) = ||§ — yl||3, empirical risk is mean-square error (MSE)
1w ;
£(6) =~ 16—l
=1

> a simple least squares problem, with solution 6 = £ 3~" y*  (which satisfies V£(8) = 0)
» i.e., best constant predictor with square loss is the average or mean of the data

» with this best predictor, mean square error is the variance of the data



ERM with square loss
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Absolute loss
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ERM with absolute loss

» for absolute loss £(3,y) = |§ — y|, empirical risk is mean-absolute error

1 & i
L) = 16—y
=1

b L(6) is convex and piecewise linear, with kink points at the data values y?,. ..

» we'll see that 6 is optimal if and only if it is a median of the data

» another reasonable constant approximation of the data

Y

n
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ERM with absolute loss

14 —— absolute loss
—— median
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Median

» for 8 € R define

ni = {y* | ¥* <6} number of data points less than 8
no = [{y* | y* > 6} number of data points greater than 6

» we say @ is a median of the data if

. ; . .. 1
» if 6 # y* for any 7 then this is the same as Mo 5
n
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Median

» assume data is sorted so y* < y? < - < y”
» if n is odd, the median is 8 = y™*t1/2  (median is unique in this case)

> if nis even, 6 is a median if y™/2 < < y™/2*t1  (median is not unique in this case)

» examples:

» the median of -3.3, -1.7, 0.4 is -1.7
» the median of -3.3, -1.7, 0.4, 4.9 is any number in [—1.7,0.4]

15



Medians minimize empirical risk with absolute loss

» we'll show that & minimizes £(8) (with absolute loss) if and only if 6 is a median of the data

b assume data are sorted, y* < --- < y™, then

B S CETYEE I S

i=l4+n—ng

» so if 8 is not equal to a data value

£'(6) = E(G) =-=
n
» left and right derivatives are
, 2n1 / 2n2
kbt R —1- 2"
L.(6) = - 1 LL(0) = -
» 0 is optimal means £’ () < 0 and £/ (8) > 0, which is
mol ome 1
n — 2 n — 2

16



Tilted absolute loss
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Tilted absolute value function

» for 7 € [0, 1] the tilted absolute value function is

—TU u <0
pT(u):{ 1-7)u u>0

» can be expressed as p,(u) = (1/2 — T)u + (1/2)]|u]

08 7 =0.25 0 7=05 0 7T =0.75

pr(u) o pr(u) pr(u)
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ERM with tilted absolute value loss

n

» empirical risk with tilted absolute loss £(§,y) = p-(§ — y) is L(8) = % Zi:l pr (9 —vy)
b L(6) is convex and piecewise linear, with kink points at the data values 4*,...,y™
» for 7 < 1/2, it's worse (more loss) to over-estimate y (§ > y) than to under-estimate

» for 7 > 1/2, it's worse (more loss) to under-estimate y than to overestimate

» we'll see that 8 is optimal if it is a 7-quantile of the data

» roughly, the fraction of y*'s less than 6 is around T
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ERM with tilted absolute loss
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Quantiles

» for 7 €[0, 1], we call 8 a T-quantile of the data if

> if 8 # y* for all 4 then this is the same as 7 = n;/n

» some common quantiles have names like
» median (7 = 0.5)
» quartiles (7 = 0.25,0.5,0.75)
» deciles (r =0.1,0.2,...,0.9)
» percentiles (7 = 0.01,0.02,...,0.99)
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Quantiles

T-quantile
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» if the data is (4,7,7,8,9) then

» the 0.1 quantile is 4
» the 0.2 quantile is any number in [4,7]
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T-quantile minimizes empirical risk with tilted absolute loss
6 minimizes £(8) if and only if it is a 7-quantile

» assume data are sorted, y* < --- < y™, then

ni n

LO)=pr8—y)+ 4P (6-y") = 2> (=T -y)+ > S (8-

i=1 i=l4+n—ng

» if 8 is not equal to a data value, then £'(8) = (n1(1 — 7) — Tn2)/n

» left and right derivatives are

n1

‘CL(G) = (nl(l - 7-) - T(n - ‘n]_))/‘n, = 7 —T

Uz

L) =(n—n)(1—7)—Tn2)/n=1-7— n

» 0 is optimal means £’ (8) < 0 and £/ (8) > 0, which means % <r<1- %
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Fractional loss
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ERM with fractional loss
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» fractional loss £(7,y) = max{g -1,%- 1} = exp(|logy —log y|) -1

» empirical risk is

n

_1 LA
L(8) = anax{yi 1, 7 1}

=1

> a convex function, with kink points at y*,...,y™

» we call 8 that minimizes £(8) the fractional middle of y',...,y™ (not a standard term)
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ERM with fractional loss
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ERM with fractional loss

» with y' <--- <y" and ¢* < 6 < y**!, we have

» so for y* < 8 < y**! we have
1 (1¢ 1~ 1
i _ _ - | = i = =
fo=4 (1v) 1 2 5
1= =
» L'(6) is an increasing function of 8 (since it is convex)

» first find k so that £, (y*) < 0 and £ (y***) > 0 (using above expression evaluated at y* and y***)

P 1/2
6 — Do Y 4
Ei:k+1 1/y

» setting £'(9) to zero we get
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Summary
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Summary

» the simplest predictor is a constant, § = go(u) = 6
» for different losses, ERM gives different s

» for some common losses, we recover well known predictors of a set of data
» square loss given mean
» absolute loss gives median

p tilted absolute loss gives quantile
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