
Constant predictors

we explore the simplest possible predictor, which is constant

R

a linear regression model with

doesn’t depend on , which in fact we don’t even need

we’ll use ERM to fit to data

we don’t need regularization since the predictor is (completely) insensitive

different losses lead to different predictors
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Losses

we are given data R

we have a loss function R R R

quantifies how badly approximates

typical losses for scalar ( ):

quadratic loss:

absolute loss:

fractional loss: for ,

max

(often scaled by 100 to become percentage error)

typical loss for vector ( ): quadratic loss,
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ERM

we choose to minimize empirical risk,

we’ll be able to solve this minimization problem for the losses above, and others

we’ll recover some reasonable choices of a constant approximation of the data, such as mean and median
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Convexity

a function R R is convex if it for all R and all

this means the function ‘curves upward’ or has positive curvature

in terms of derivatives, convexity can be expressed as

(if exists) is nondecreasing (as increases)

(if exists) for all

convex nonconvex
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Minimizing convex functions — optimality conditions

for a convex function

if is differentiable , minimizes if and only if

for convex R R (i.e., )

minimizes if and only if ,

is the righthand derivative,

is the lefthand derivative,

these both exist, even if is not differentiable

if exists, then

simple example: minimizes , since ,
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ERM and convexity

for the losses functions listed above (and many others), is a convex function of

an average of convex functions is convex, so is convex

so the optimality conditions above tell us when minimizes

for scalar , minimizes when ,
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Square loss
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ERM with square loss

for square loss , empirical risk is mean-square error (MSE)

a simple least squares problem, with solution (which satisfies )

i.e., best constant predictor with square loss is the average or mean of the data

with this best predictor, mean square error is the variance of the data
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ERM with square loss
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Absolute loss
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ERM with absolute loss

for absolute loss , empirical risk is mean-absolute error

is convex and piecewise linear, with kink points at the data values

we’ll see that is optimal if and only if it is a median of the data

another reasonable constant approximation of the data
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ERM with absolute loss
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Median

for R define

number of data points less than

number of data points greater than

we say is a median of the data if

and

if for any then this is the same as

14



Median

assume data is sorted so

if is odd, the median is (median is unique in this case)

if is even, is a median if (median is not unique in this case)

examples:

the median of -3.3, -1.7, 0.4 is -1.7

the median of -3.3, -1.7, 0.4, 4.9 is any number in
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Medians minimize empirical risk with absolute loss

we’ll show that minimizes (with absolute loss) if and only if is a median of the data

assume data are sorted, , then

so if is not equal to a data value

left and right derivatives are

is optimal means and , which is
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Tilted absolute loss
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Tilted absolute value function

for the tilted absolute value function is

can be expressed as
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ERM with tilted absolute value loss

empirical risk with tilted absolute loss is

is convex and piecewise linear, with kink points at the data values

for , it’s worse (more loss) to over-estimate ( ) than to under-estimate

for , it’s worse (more loss) to under-estimate than to overestimate

we’ll see that is optimal if it is a -quantile of the data

roughly, the fraction of ’s less than is around
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ERM with tilted absolute loss
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Quantiles

for , we call a -quantile of the data if

if for all then this is the same as

some common quantiles have names like

median ( )

quartiles ( )

deciles ( )

percentiles ( )
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Quantiles

-quantile

if the data is (4,7,7,8,9) then

the 0.1 quantile is 4

the 0.2 quantile is any number in [4,7]

the 0.5 quantile is 7
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-quantile minimizes empirical risk with tilted absolute loss

minimizes if and only if it is a -quantile

assume data are sorted, , then

if is not equal to a data value, then

left and right derivatives are

is optimal means and , which means
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Fractional loss
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ERM with fractional loss

fractional loss max

empirical risk is

max

a convex function, with kink points at

we call that minimizes the fractional middle of (not a standard term)
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ERM with fractional loss
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ERM with fractional loss

with and , we have

so for we have

is an increasing function of (since it is convex)

first find so that and (using above expression evaluated at and )

setting to zero we get
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Summary
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Summary

the simplest predictor is a constant,

for different losses, ERM gives different s

for some common losses, we recover well known predictors of a set of data

square loss given mean

absolute loss gives median

tilted absolute loss gives quantile
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