Loss and empirical risk

Parametrized predictors

- ▶ many predictors have the form $\hat{y} = g(x, \theta)$ (also written as $g_{\theta}(x)$)
- ▶ the function *g* fixes the *structure* or *form* of the predictor
- \triangleright θ is a set of *parameters*, which can be a vector, matrix, or other structure
- example: linear regression model for scalar y
 - $\blacktriangleright \ \hat{y} = g_{\theta}(x) = \theta_1 x_1 + \dots + \theta_d x_d$
 - ▶ here $\theta \in \mathbf{R}^d$ is a vector
- ▶ example: *linear regression model* for vector $y \in \mathbf{R}^m$
 - $\blacktriangleright \ \hat{y} = g_{\theta}(x) = \theta_1 x_1 + \dots + \theta_d x_d$
 - \blacktriangleright here heta is a collection of *m*-vectors $heta_1, \ldots, heta_d \in {\mathsf{R}}^m$
 - \blacktriangleright usually organized as a d imes m matrix heta with rows $heta_i^{\mathsf{T}}$
- \blacktriangleright for a tree prediction model, θ encodes the tree, thresholds, and leaf values

Training a predictor

• choosing a particular θ given some *training data*

$$x^1,\ldots,x^n, y^1,\ldots,y^n$$

is called *training* or *fitting* the model (to the data)

 \blacktriangleright example: linear regression model for scalar y can be trained using *least squares*, *i.e.*, choose θ to minimize

$$\sum_{i=1}^n (\hat{y}^i - y^i)^2 = \sum_{i=1}^n (g_ heta(x^i) - y^i)^2$$

▶ this lecture covers a general and effective method to train a predictor, empirical risk minimization (ERM)

ERM is a generalization of least squares

Loss function

▶ a loss function $\ell : \mathbb{R}^m \times \mathbb{R}^m \to \mathbb{R}$ quantifies how well (more accurately, how badly) \hat{y} approximates y

- \blacktriangleright smaller values of $\ell(y,y)$ indicate that y is a good approximation of y
- \blacktriangleright typically (but not always) $\ell(y,y)=0$ and $\ell(\hat{y},y)\geq 0$ for all $\hat{y},\,y$

examples

- quadratic loss: $\ell(\hat{y}, y) = (\hat{y} y)^2$ (for scalar y); $\ell(\hat{y}, y) = ||\hat{y} y||_2^2$ (for vector y)
- ▶ absolute loss: $\ell(\hat{y}, y) = |\hat{y} y|$ (for scalar y)
- ▶ fractional loss or relative loss (for scalar, positive y),

$$l(\hat{y},y) = \max\left\{rac{\hat{y}}{y} - 1, rac{y}{\hat{y}} - 1
ight\} = \expig(\left|\log \hat{y} - \log y
ight| ig) - 1$$

(often scaled by 100 to become *percentage error*)

Empirical risk

▶ the *empirical risk* is the average loss over the data points,

$$\mathcal{L}(heta) = rac{1}{n}\sum_{i=1}^n \ell(\hat{y}^i,y^i) = rac{1}{n}\sum_{i=1}^n \ell(g_ heta(x^i),y^i)$$

• if $\mathcal{L}(\theta)$ is small, the predictor predicts or fits the given data well (according to the loss ℓ)

- > empirical risk and performance metric are closely related
 - > performance metric is used to *judge* a prediction model
 - > empirical risk is used to *train* a (parametrized) prediction model
- > empirical risk and performance metric are often, but not always, the same; we'll see why later

Examples

(for scalar y)

• for quadratic loss, $\mathcal{L}(\theta)$ is *mean-square-error* (MSE)

$$\mathcal{L}(heta) = rac{1}{n}\sum_{i=1}^n (g_ heta(x^i) - y^i)^2$$

• for absolute loss, $\mathcal{L}(\theta)$ is *mean absolute error* (MAE)

$$\mathcal{L}(heta) = rac{1}{n}\sum_{i=1}^n |g_{ heta}(x^i) - y^i|$$

Empirical risk minimization

Empirical risk minimization

- *empirical risk minimization* (ERM) is a general method for choosing θ , *i.e.*, fitting a parametrized predictor
- **ERM**: choose θ to minimize empirical risk $\mathcal{L}(\theta)$
- **ERM** chooses θ by attempting to match given data set well, as measured by the loss ℓ
- ▶ in some cases, e.g., square loss, we can solve this minimization problem analytically
- in most cases, there is no analytic solution to this minimization problem, so we use *numerical optimization* to find θ that minimizes (or approximately minimizes) $\mathcal{L}(\theta)$; more on this topic later
- the predictor found by ERM depends on the loss you choose
- ▶ we use validation (with the performance metric) to choose from among candidate losses

Regularized empirical risk minimization

- ▶ an important attribute of a predictor g_{θ} : sensitivity or continuity
- g_{θ} is *insensitive* if for x near \tilde{x} , $g_{\theta}(x)$ is near $g_{\theta}(\tilde{x})$
- ▶ *i.e.*, if the features are close, the predictions are close
- there are many ways to make this more precise
- ▶ insensitive predictors often generalize well, especially when you don't have a lot of training data
- ▶ so insensitivity is a good attribute for a predictor to have

Regularizers

- ▶ a *regularizer* is a function $r : \mathbb{R}^p \to \mathbb{R}$ that measures the sensitivity of g_θ
- ▶ *i.e.*, $r(\theta)$ is small when g_{θ} is insensitive, and larger when g_{θ} is sensitive

- ▶ for linear regression model $g_{\theta}(x) = \theta^{\mathsf{T}} x$, small sensitivity is associated with small θ
- ▶ by Cauchy-Schwarz inequality,

$$||g_{ heta}(x)-g_{ heta}(ilde{x})||_2=|| heta^{ op}(x- ilde{x})||_2\leq || heta||_F||x- ilde{x}||_2$$

where $||A||_F^2 = \sum_{i,j} A_{ij}^2$ is the Frobenius norm squared

▶ suggests regularizer $r(\theta) = ||\theta||_F^2$

Ridge and ℓ_1 regularizers

) the most common regularizer for scalar y is ℓ_2 or square or ridge regularization,

$$r(heta) = || heta||_2^2 = heta_1^2 + \dots + heta_d^2$$

$$\blacktriangleright$$
 for vector y , we use $r(heta) = || heta||_F^2 = \sum_{i=1}^d \sum_{j=1}^m heta_{ij}^2$

▶ another popular regularizer is the l_1 regularizer

$$r(heta) = || heta||_1 = | heta_1| + \dots + | heta_d|$$

for scalar y; for vector y we use $r(heta) = \sum_{i=1}^d \sum_{j=1}^m | heta_{ij}|$

▶ we will see other regularizers later

Regularizers when there is a constant feature

• suppose $x_1 = 1$, *i.e.*, the first feature is constant

with linear predictor, this means

$$g_{ heta}(x)= heta^{ op}x= heta_{1,:}^{ op}+ heta_{2:d,:}^{ op}x_{2:d}$$

where $\theta_{1,:}$ is the first row of θ and $\theta_{2:d,:}$ are the remaining d-1 rows of θ

▶ $\theta_{1,:}$ does not affect sensitivity, since

$$||g_{ heta}(x) - g_{ heta}(ilde{x})||_2 = || heta_{2:d,:}^{ op}(x - ilde{x})||_2$$

 \blacktriangleright so there is no need to regularize first row of θ when x_1 is constant

▶ suggests that regularizer can be function of $\theta_{2:d,:}$, e.g., $r(\theta) = ||\theta_{2:d,:}||_F^2 = \sum_{i=2}^d \sum_{j=1}^m \theta_{ij}^2$

Regularized empirical risk minimization

- regularized ERM is a method to trade off
 - ▶ good predictor fit on the training data, *i.e.*, $\mathcal{L}(\theta)$ small
 - ▶ insensitivity of g_{θ} , *i.e.*, $r(\theta)$ small
- ▶ regularized ERM (RERM): choose θ to minimize weighted sum $\mathcal{L}(\theta) + \lambda r(\theta)$
- \triangleright $\lambda \ge 0$ is a parameter, called the *regularization hyper-parameter*
- ▶ when $\lambda = 0$, RERM reduces to ERM
- in most cases there is no analytic solution to this minimization problem, so we use *numerical optimization* to find θ that minimizes (or approximately minimizes) $\mathcal{L}(\theta) + \lambda r(\theta)$

- with ERM, you choose the model parameter θ that minimizes $\mathcal{L}(\theta)$
- with RERM, you choose a model parameter θ that does not minimize $\mathcal{L}(\theta)$
- but it is *less sensitive* than the ERM predictor
- > and therefore often generalizes better, *i.e.*, makes better predictions on new, unseen data

- \blacktriangleright we choose regularizer r and regularization parameter λ using validation, with the performance metric
- \blacktriangleright choosing a value of λ is called *regularization hyper-parameter search*
- > typical regularization hyper-parameter search:
 - \blacktriangleright choose a set of values of $\lambda,$ typically a few tens of values, log-spaced
 - ▶ find $\theta(\lambda)$ for each λ ($\theta(\lambda)$ is called the *regularization path*)
 - ▶ for each λ , evaluate the test set performance of $g_{\theta(\lambda)}$
 - \blacktriangleright choose the value of λ that gives the best test performance

Least squares and ridge regression

ERM via least squares

▶ with square loss and linear prediction model, we can solve the ERM problem exactly

▶ for model $g_{\theta}(x) = \theta^{\mathsf{T}} x$ and data $x^1, \ldots, x^n \in \mathsf{R}^d$, and $y^1, \ldots, y^n \in \mathsf{R}^m$,

express empirical risk in matrix notation as

$$\mathcal{L}(heta) = rac{1}{n}\sum_{i=1}^n (heta^{ op}x^i-y^i)^2 = rac{1}{n}||X heta-Y||_F^2$$

 $ightarrow X \in \mathbf{R}^{n imes d}$ and $Y \in \mathbf{R}^{n imes m}$ are the feature and outcome data matrices

$$X = egin{bmatrix} (x^1)^{^{ op}} \ dots \ (x^n)^{^{ op}} \end{bmatrix} \qquad Y = egin{bmatrix} (y^1)^{^{ op}} \ dots \ (y^n)^{^{ op}} \end{bmatrix}$$

> the minimizing θ is

$$\theta = X^{\dagger}Y = (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}Y$$

(assuming columns of data matrix X are independent)

called *least squares regression*

- ▶ with square loss and regularization, and linear predictor, we can solve the RERM problem exactly
- called ridge regression
- ▶ RERM objective function is

$$\mathcal{L}(\theta) + \lambda ||\theta||_F^2 = \frac{1}{n} ||X\theta - Y||_F^2 + \lambda ||\theta||_F^2 = \frac{1}{n} \left\| \begin{bmatrix} X \\ \sqrt{n\lambda}I \end{bmatrix} \theta - \begin{bmatrix} Y \\ 0 \end{bmatrix} \right\|_F^2$$

solution is

$$\theta = (X^{\mathsf{T}}X + n\lambda I)^{-1}X^{\mathsf{T}}Y$$

(for $\lambda > 0$, the inverse always exsts)

Julia implementation

```
using LinearAlgebra
function ridgeregression(X,Y,lambda)
n,d = size(X)
m = size(Y,2)
A = [X; sqrt(lambda*n)*I(d)]
B = [Y; zeros(d,m)]
theta = A\B
end
```

Ridge regression with a constant feature

 \blacktriangleright when $x_1 = 1$, we don't regularize first row of heta

▶ we use regularizer $||\tilde{\theta}||_{F}^{2}$, where $\tilde{\theta} = \theta_{2:d,:} \in \mathbb{R}^{(d-1) \times m}$ is θ with its first row removed

▶ RERM objective function is

$$\mathcal{L}(\theta) + \lambda ||\tilde{\theta}||_F^2 = \frac{1}{n} ||X\theta - Y||_F^2 + \lambda ||E\theta||_F^2 = \frac{1}{n} \left\| \begin{bmatrix} X \\ \sqrt{n\lambda}E \end{bmatrix} \theta - \begin{bmatrix} Y \\ 0 \end{bmatrix} \right\|_F^2$$
 where $E = \begin{bmatrix} 0 & I_{d-1} \end{bmatrix}$

solution is

$$\theta = (X^{\mathsf{T}}X + n\lambda E^{\mathsf{T}}E)^{-1}X^{\mathsf{T}}Y$$

$$\blacktriangleright E^{\mathsf{T}}E = \operatorname{diag}(0, \mathbf{1}_{d-1}) = \begin{bmatrix} 0 & 0 \\ 0 & I_{d-1} \end{bmatrix}$$

Julia implementation

```
using LinearAlgebra
function ridgeregressionconstfeature(X,Y,lambda)
n,d = size(X)
m = size(Y,2)
E = [zeros(d-1,1) I(d-1)]
A = [X; sqrt(lambda*n)*E]
B = [Y; zeros(d-1,m)]
theta = A\B
end
```

Example: Diabetes

- target is diabetes progression over a year
- ▶ 10 explanatory variables (age, bmi,...), standardized, plus constant feature
- ▶ data from 442 individuals, split 80% for training, 20% for validation
- \blacktriangleright we fit models using ridge regression with λ ranging from 10^{-5} to 10^4

Empirical risk versus sensitivity

▶ as λ increases, empirical risk $\mathcal{L}(\theta)$ increases and sensitivity $r(\theta)$ decreases

Regularization path

▶ plot shows regularization path, *i.e.*, d = 11 components of θ versus λ

- \blacktriangleright as λ increases, model parameters (generally) get smaller
- explains why regularization is also called *shrinkage*

Validation results

> performance metric (mean square error) on training data (blue) and test data (red)

- ▶ a reasonable choice of λ is 0.3
- ▶ in this example regularization only improved model performance a little bit

Summary

Summary

 \blacktriangleright empirical risk is a function of the parameter θ that measures the fit on the training data set

- ▶ it is often but not always the same as the performance metric
- **ERM** chooses θ to minimize the empirical risk
- regularized ERM trades off two objectives:
 - **b** small empirical risk (*i.e.*, good fit on the training data)
 - predictor insensitivity
- ▶ we choose the loss (and regularizer) by validation, using our performance metric
- ▶ for quadratic loss and regularizers we can find the parameters by least squares
- ▶ in other cases we use numerical optimization, covered later