
Loss and empirical risk
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Parametrized predictors

many predictors have the form (also written as )

the function fixes the structure or form of the predictor

is a set of parameters, which can be a vector, matrix, or other structure

example: linear regression model for scalar

here R is a vector

example: linear regression model for vector R

here is a collection of -vectors R

usually organized as a matrix with rows T

for a tree prediction model, encodes the tree, thresholds, and leaf values
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Training a predictor

choosing a particular given some training data

is called training or fitting the model (to the data)

example: linear regression model for scalar can be trained using least squares, i.e., choose to minimize

this lecture covers a general and effective method to train a predictor, empirical risk minimization (ERM)

ERM is a generalization of least squares
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Loss function

a loss function R R R quantifies how well (more accurately, how badly) approximates

smaller values of indicate that is a good approximation of

typically (but not always) and for all ,

examples

quadratic loss: (for scalar ); (for vector )

absolute loss: (for scalar )

fractional loss or relative loss (for scalar, positive ),

max

(often scaled by 100 to become percentage error)
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Empirical risk

the empirical risk is the average loss over the data points,

if is small, the predictor predicts or fits the given data well (according to the loss )

empirical risk and performance metric are closely related

performance metric is used to judge a prediction model

empirical risk is used to train a (parametrized) prediction model

empirical risk and performance metric are often, but not always, the same; we’ll see why later
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Examples

(for scalar )

for quadratic loss, is mean-square-error (MSE)

for absolute loss, is mean absolute error (MAE)
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Empirical risk minimization
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Empirical risk minimization

empirical risk minimization (ERM) is a general method for choosing , i.e., fitting a parametrized
predictor

ERM: choose to minimize empirical risk

ERM chooses by attempting to match given data set well, as measured by the loss

in some cases, e.g., square loss, we can solve this minimization problem analytically

in most cases, there is no analytic solution to this minimization problem, so we use numerical optimization
to find that minimizes (or approximately minimizes) ; more on this topic later

the predictor found by ERM depends on the loss you choose

we use validation (with the performance metric) to choose from among candidate losses
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Regularized empirical risk minimization
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Sensitivity of a predictor

an important attribute of a predictor : sensitivity or continuity

is insensitive if for near , is near

i.e., if the features are close, the predictions are close

there are many ways to make this more precise

insensitive predictors often generalize well, especially when you don’t have a lot of training data

so insensitivity is a good attribute for a predictor to have
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Regularizers

a regularizer is a function R R that measures the sensitivity of

i.e., is small when is insensitive, and larger when is sensitive

for linear regression model T , small sensitivity is associated with small

by Cauchy-Schwarz inequality,

T

where is the Frobenius norm squared

suggests regularizer
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Ridge and regularizers

the most common regularizer for scalar is or square or ridge regularization,

for vector , we use

another popular regularizer is the regularizer

for scalar ; for vector we use

we will see other regularizers later
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Regularizers when there is a constant feature

suppose , i.e., the first feature is constant

with linear predictor, this means

T T T

where is the first row of and are the remaining rows of

does not affect sensitivity, since

T

so there is no need to regularize first row of when is constant

suggests that regularizer can be function of , e.g.,
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Regularized empirical risk minimization

regularized ERM is a method to trade off

good predictor fit on the training data, i.e., small

insensitivity of , i.e., small

regularized ERM (RERM): choose to minimize weighted sum

is a parameter, called the regularization hyper-parameter

when , RERM reduces to ERM

in most cases there is no analytic solution to this minimization problem, so we use numerical optimization
to find that minimizes (or approximately minimizes)
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Regularized versus unregularized ERM

with ERM, you choose the model parameter that minimizes

with RERM, you choose a model parameter that does not minimize

but it is less sensitive than the ERM predictor

and therefore often generalizes better, i.e., makes better predictions on new, unseen data
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Regularization hyper-parameter search

we choose regularizer and regularization parameter using validation, with the performance metric

choosing a value of is called regularization hyper-parameter search

typical regularization hyper-parameter search:

choose a set of values of , typically a few tens of values, log-spaced

find for each ( is called the regularization path)

for each , evaluate the test set performance of

choose the value of that gives the best test performance
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Least squares and ridge regression
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ERM via least squares

with square loss and linear prediction model, we can solve the ERM problem exactly

for model T and data R , and R ,

express empirical risk in matrix notation as

T

R and R are the feature and outcome data matrices
T

...
T

T

...
T
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Least squares regression

the minimizing is
T T

(assuming columns of data matrix are independent)

called least squares regression
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Ridge regression

with square loss and regularization, and linear predictor, we can solve the RERM problem exactly

called ridge regression

RERM objective function is

solution is
T T

(for , the inverse always exsts)
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Julia implementation

using LinearAlgebra
function ridgeregression(X,Y,lambda)
n,d = size(X)
m = size(Y,2)
A = [X; sqrt(lambda*n)*I(d)]
B = [Y; zeros(d,m)]
theta = A\B
end
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Ridge regression with a constant feature

when , we don’t regularize first row of

we use regularizer , where R is with its first row removed

RERM objective function is

where

solution is
T T T

T diag 1
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Julia implementation

using LinearAlgebra
function ridgeregressionconstfeature(X,Y,lambda)
n,d = size(X)
m = size(Y,2)
E = [zeros(d-1,1) I(d-1)]
A = [X; sqrt(lambda*n)*E]
B = [Y; zeros(d-1,m)]
theta = A\B
end

24



Example: Diabetes

target is diabetes progression over a year

10 explanatory variables (age, bmi,. . . ), standardized, plus constant feature

data from 442 individuals, split 80% for training, 20% for validation

we fit models using ridge regression with ranging from to
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Empirical risk versus sensitivity

as increases, empirical risk increases and sensitivity decreases
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Regularization path

plot shows regularization path, i.e., components of versus

as increases, model parameters (generally) get smaller

explains why regularization is also called shrinkage
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Validation results

risk

performance metric (mean square error) on training data (blue) and test data (red)

a reasonable choice of is

in this example regularization only improved model performance a little bit
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Summary
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Summary

empirical risk is a function of the parameter that measures the fit on the training data set

it is often but not always the same as the performance metric

ERM chooses to minimize the empirical risk

regularized ERM trades off two objectives:

small empirical risk (i.e., good fit on the training data)

predictor insensitivity

we choose the loss (and regularizer) by validation, using our performance metric

for quadratic loss and regularizers we can find the parameters by least squares

in other cases we use numerical optimization, covered later
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