Loss and empirical risk



Parametrized predictors

many predictors have the form § = g(z, 8) (also written as go(z))

v

» the function g fixes the structure or form of the predictor

0 is a set of parameters, which can be a vector, matrix, or other structure

v

example: linear regression model for scalar y

v

» §=go(z) =61z1+ -+ 04zq
» here 6 € R is a vector
» example: linear regression model for vector y € R™

» §=go(z) =061z1+ - -+ 04zq
» here 8 is a collection of m-vectors 81,...,64 € R™

» usually organized as a d x m matrix 8 with rows 92—

» for a tree prediction model, 6 encodes the tree, thresholds, and leaf values



Training a predictor

» choosing a particular 8 given some training data
z,..,2" Y,..,y
is called training or fitting the model (to the data)

» example: linear regression model for scalar y can be trained using least squares, i.e., choose 6 to minimize
n n
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» this lecture covers a general and effective method to train a predictor, empirical risk minimization (ERM)

» ERM is a generalization of least squares



Loss function

» a loss function £: R™ x R™ — R quantifies how well (more accurately, how badly) § approximates y

» smaller values of £(§,y) indicate that § is a good approximation of y

» typically (but not always) £(y,y) = 0 and £(7,y) > 0 for all §, y
» examples

B quadratic loss: £(§,y) = (§ — y)? (for scalar y); £(4,y) = ||§ — y||2 (for vector y)
» absolute loss: £(4,y) = |§ — y| (for scalar y)

» fractional loss or relative loss (for scalar, positive y),

1(9,9) = max{z -1,¥ 1} — exp(|log 7 — log y|) — 1
Y Y

(often scaled by 100 to become percentage error)



Empirical risk

» the empirical risk is the average loss over the data points,
£O)= LS g ) = 1S tanle) )
n n
=1 =1

» if £(8) is small, the predictor predicts or fits the given data well (according to the loss £)

» empirical risk and performance metric are closely related

» performance metric is used to judge a prediction model

» empirical risk is used to train a (parametrized) prediction model

» empirical risk and performance metric are often, but not always, the same; we'll see why later



Examples

(for scalar y)

» for quadratic loss, £(8) is mean-square-error (MSE)
1\ i iy2
f) = — —
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» for absolute loss, £(6) is mean absolute error (MAE)

£6)= 2> lgo(z) — ¥



Empirical risk minimization



Empirical risk minimization

» empirical risk minimization (ERM) is a general method for choosing 6, ie., fitting a parametrized
predictor

» ERM: choose 8 to minimize empirical risk L(8)
» ERM chooses 6 by attempting to match given data set well, as measured by the loss £
» in some cases, e.g., square loss, we can solve this minimization problem analytically

» in most cases, there is no analytic solution to this minimization problem, so we use numerical optimization
to find 8 that minimizes (or approximately minimizes) £(6); more on this topic later

» the predictor found by ERM depends on the loss you choose

» we use validation (with the performance metric) to choose from among candidate losses



Regularized empirical risk minimization
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Sensitivity of a predictor

» an important attribute of a predictor gg: sensitivity or continuity

» go is insensitive if for z near &, go(z) is near go(%)

» i.e., if the features are close, the predictions are close

» there are many ways to make this more precise

» insensitive predictors often generalize well, especially when you don’t have a lot of training data

» so insensitivity is a good attribute for a predictor to have
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Regularizers

» a regularizer is a function r : RP — R that measures the sensitivity of g

» ie., r(0) is small when g is insensitive, and larger when gy is sensitive

» for linear regression model go(z) = 8"z, small sensitivity is associated with small 8
» by Cauchy-Schwarz inequality,
ll96(z) — go(&)ll2 = 167 (& — &)l]2 < [I6ll<lle — &]l2
where ||A||% = Z” AZ; is the Frobenius norm squared

b suggests regularizer 7(8) = ||9||%
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Ridge and /; regularizers

» the most common regularizer for scalar y is £2 or square or ridge regularization,
2 2 2
r(0)=16llz =61 +--- + 6

» for vector y, we use 7(8) = ||6]|% = 2%, o6y

» another popular regularizer is the £1 regularizer
(6) = [16lls = |61] + - - - + |6al
for scalar y; for vector y we use 7(6) = S3¢ Doy 1651

» we will see other regularizers later

13



Regularizers when there is a constant feature

» suppose z1 = 1, i.e., the first feature is constant
» with linear predictor, this means
go(z) =0T =07, + 634,72
where 6. is the first row of 6 and 65.4,. are the remaining d — 1 rows of 8
» 01, does not affect sensitivity, since

llge(z) — ge(®)ll2 = |162:4,.(z — &)I|2

» so there is no need to regularize first row of 8 when z; is constant

b suggests that regularizer can be function of 82,4, e.g., 7(8) = ||82.4,:||% = Z‘Zﬂ Z;n:l 63,
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Regularized empirical risk minimization

» regularized ERM is a method to trade off

» good predictor fit on the training data, i.e., £(8) small

b insensitivity of gg, i.e., (6) small
» regularized ERM (RERM): choose 6 to minimize weighted sum L£(8) + Ar(8)
» X\ >0 is a parameter, called the regularization hyper-parameter
» when A = 0, RERM reduces to ERM

» in most cases there is no analytic solution to this minimization problem, so we use numerical optimization
to find 6 that minimizes (or approximately minimizes) £(0) + Ar(6)
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Regularized versus unregularized ERM

» with ERM, you choose the model parameter 6 that minimizes £(6)
» with RERM, you choose a model parameter 6 that does not minimize £(6)
» but it is less sensitive than the ERM predictor

» and therefore often generalizes better, i.e., makes better predictions on new, unseen data
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Regularization hyper-parameter search

» we choose regularizer r and regularization parameter A using validation, with the performance metric
» choosing a value of A is called regularization hyper-parameter search

» typical regularization hyper-parameter search:
» choose a set of values of A, typically a few tens of values, log-spaced
» find 8(A) for each A (8(X) is called the regularization path)
» for each A, evaluate the test set performance of gg(x)

» choose the value of A that gives the best test performance
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Least squares and ridge regression
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ERM via least squares

» with square loss and linear prediction model, we can solve the ERM problem exactly
» for model go(z) = 0"z and data z',...,z™ € R%, and 3%, ...,y™ € R™,

» express empirical risk in matrix notation as
£6)= 2> (077 — ¥ = X6 - Y
n i n
i

b X € R™% and Y € R™™ are the feature and outcome data matrices
(zh)" (y")"
X = Y =
(™) (™)'
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Least squares regression

» the minimizing 8 is
=Xy =(X"X)"'X"Y

(assuming columns of data matrix X are independent)

» called least squares regression
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Ridge regression

» with square loss and regularization, and linear predictor, we can solve the RERM problem exactly
» called ridge regression

» RERM objective function is

1
L(6) + A6llz = —[1X6 = Y|z + All6llz = ~

» solution is
6=(X"X+nA)'X"Y

(for A > 0, the inverse always exsts)
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Julia implementation

using LinearAlgebra

function ridgeregression(X,Y,lambda)
n,d = size(X)

m = size(Y,2)

A [X; sqrt(lambda*n)*I(d)]

B = [Y; zeros(d,m)]

theta = A\B

end



Ridge regression with a constant feature

when z; = 1, we don't regularize first row of 8
we use regularizer ||6||%, where § = 65.4. € RE™D*™ is g with its first row removed
RERM objective function is

. 1 1
L£(8) + N|8llz = ~llx6 — Y&+ X|E6||7 = -

where B = [0 Iq 1 ]
solution is

0=(X"X+n\E'E)'X'Y

T — di = 0 °
E'E = diag(0,14-1) = {0 Ta—y
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Julia implementation

using LinearAlgebra

function ridgeregressionconstfeature(X,Y,lambda)

n,d = size(X)

m = size(Y,2)

E = [zeros(d-1,1) I(d-1)]
A = [X; sqrt(lambda*n)*E]
B = [Y; zeros(d-1,m)]
theta = A\B

end
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Example: Diabetes

» target is diabetes progression over a year
» 10 explanatory variables (age, bmi,...), standardized, plus constant feature
» data from 442 individuals, split 80% for training, 20% for validation

» we fit models using ridge regression with X ranging from 1075 to 10*
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Empirical risk versus sensitivity
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» as A increases, empirical risk £(8) increases and sensitivity r(6) decreases

-4

r(6)

0.8

0.6

0.4

0.2

0.0

26



Regularization path

» plot shows regularization path, i.e., d = 11 components of 8 versus A
» as A increases, model parameters (generally) get smaller

» explains why regularization is also called shrinkage
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Validation results
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» performance metric (mean square error) on training data (blue) and test data (red)
» a reasonable choice of A is 0.3

» in this example regularization only improved model performance a little bit

28



Summary
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Summary

» empirical risk is a function of the parameter 6 that measures the fit on the training data set
» it is often but not always the same as the performance metric

» ERM chooses 6 to minimize the empirical risk

» regularized ERM trades off two objectives:

» small empirical risk (i.e., good fit on the training data)

» predictor insensitivity
» we choose the loss (and regularizer) by validation, using our performance metric
» for quadratic loss and regularizers we can find the parameters by least squares

» in other cases we use numerical optimization, covered later
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