Parametrized probabilistic classifiers

» probabilistic classifier G¢ depends on parameter 6
» we'll choose 6 by ERM or RERM

» we judge probabilistic classifier by average negative log likelihood on a test data set



ERM for probabilistic classifiers

» data set u',...,u™, v',... 0"

» parametrized probabilistic classifier Gg, with predicted distributions p, ..., 5™ (which depend on 8)

» define a loss function £(p, v)
» first argument p is a distribution on V

» second argument v is an element of V

» ERM: choose 6 to minimize the average loss £(6) = 2 >"  £(p°,v*)

» RERM: choose 8 to minimize the average loss plus a regularizer, £(8) + Ar(6)

» X > 0 is the regularization hyper-parameter



Cross-entropy loss



Negative log likelihood

» the negative log-likelihood of v under distribution p is
(5, v) = —log p(v)
i.e., the negative log of the probability of the outcome v
» (¢ takes two arguments, the first is a function p, the second is an element of V
» since p(v) <1, £(,v) >0
» £°°(p,v) =0 only if p(v) =1, i.e., we are certain about the outcome and we're right

» we want the negative log-likelihood to be small



Cross-entropy loss

» £°°(p,v) is a loss function for probabilistic prediction

» similarly to loss function £(§,y) for deterministic predictions, it compares the predicted value § with the

actual value y
» but it takes a predicted probability $ instead of a point prediction §
» and it takes a raw target v instead of an embedded target y = ¥(v)

» using this, we can compute the empirical risk on a data set u!, ..., u™, v, ..., v"™

1 - cerat 1 _1 - ce 3 [
L= 60, 0v) =~ ) (G, v)
=1 =1

» the empirical risk is the average negative log likelihood which we'd like to be small
» £ is called the cross-entropy loss

» average cross-entropy loss is the cross entropy, when p is constant



Cross-entropy loss

» £°°(p,v) is how implausible v with distribution p

» £°€ small means v is ‘typical’

» £°¢ large means v is ‘unlikely’

» other names for £°¢: surprise, perplexity, . ..



Logistic un-embedding



Un-embedding for probabilistic classification

» in point classification, we un-embed § € R® as 9 = v;, with ¢ = argmin; ||§ — ;]|

» this un-embedding maps R* into V = {v1,...,vx}

» for probabilistic classification, we un-embed § € R¥ as $ = o(¢), the distribution on V given by

R exp Yk
p(vk)ziK ) k:].,,K
Zj:l €XPY;

» o is called the logistic map, activation function, inverse link function, softargmax function, normalized
exponential or softmax function

b this un-embedding maps a vector § € R¥ to a probability distribution on V



Properties of logistic map

. exp Yk
p(vk)ziK y k:].,,K

Zj:l exp §;

» adding constant to each entry of § doesn't affect p

» increasing g (leaving over entries the same) increases $(vi), decreases p(v;) for 7 # k

» P(vk) can be close to, but not equal to, zero or one

» P(vk) is close to zero or one when gk is very much less than, or greater than, the other entries

» if § =0 (or all its entries are equal), p(ve) = 1/K for all k, so is p is the uniform distribution
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ERM with logistic un-embedding
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ERM with logistic un-embedding

» for deterministic classification, we embed z* = $(u*), y* = 9 (v*), and ERM minimizes
1< N
L= E;l(ge(m 5%

resulting predictor is = %' (ge(¢(z)))

» for probabilistic classification, we embed z* = ¢(u*), and ERM minimizes
£= 13 t(o(es(z), o)
= — ge )

resulting predictor is p = o(ge(¢(z)))
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Logistic loss

» assume our probability guesses p comes from logistic un-embedding, = o(g)

» what is the cross-entropy loss of our guess p, when true label is v = v ?

R K
ce s ~ ce ~ ex ~ ~
£5(p, v) = £2(0(9), ve) = —log <pry> = gk +log (Zexpw>

j=1 %P Yj j=1

» this is the logistic loss (with x; = 1)

K
£(§,9x) = —9i + log (Zexp g])
j=1
» so with logistic un-embedding, logistic loss is the cross-entropy loss, and the resulting empirical risk is

the average negative log-likelihood
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Interpreting multi-class logistic regression

» logistic regression yields probabilistic classifier

» assume z1 = 1 is constant feature, other features standardized
> first row of 8, 67, is § when 2.4 = 0, i.e., all non-constant features take their mean value (zero)
» corresponding distribution is p = o (61)

» 0;; gives effect of z; on p;
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Logistic un-embedding for Boolean classification
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Boolean probabilistic classifier

» Boolean case: ¥V = {v1,v2}

» given u, we guess p = G(u)

» to specify the function p, we have to give the two numbers p(v1) and p(v2)
» we can just give one of them, since they sum to one

» e.g., we can give the number $(v2), the probability that v = v2; we have p(vi) = 1 — p(v2)

» example: to predict probability of rain or shine, we can give just (RAIN), since H(SHINE) = 1 — p(RAIN)
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Un-embedding for Boolean probabistic classification

. . 1 . . . .
» the function o(g) = T3 is called the sigmoid function

l1+e

» we use o for both the sigmoid and the logistic functions, since both are activation functions mapping
R™ to probability distributions on V

» in the Boolean case, can use § € R instead of § € R?

» when V = {v1,v2}, we can un-embed via
Blu) =0(9)  Bvz) =1-0(9)

» maps ¥ € R to a distribution on V

15( 1)
B(v1)

» the inverse function § = log is called the log-odds or logit function
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Sigmoid function

1

» the sigmoid function o(g) = T5e7
o

» has symmetry property o(—9) = 1 — o(%)

@
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Boolean logistic loss

» using the sigmoid un-embedding, we have
€40, 0°) = £°(0(8), v)
) —log a(§) if v = !
") —log(1— (7)) ifvi=02
) log(1+ e ¥y ifvi=10!
"~ |log(1+e€¥)  if vt =02

g, vt =0t
g, -1) ifvi =47
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e(o(g)v)

» so with this un-embedding the cross-entropy loss

is the Boolean logistic loss
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Empirical risk minimization

» empirical risk is

L= % Zlce(ﬁi, yi) = i( Z — log(g(eTm)) + Z _ log(U(—GTz))>

i:vt=vy ivt=vg
» choose 6 to minimize empirical risk

» then o(8'z) is the predicted probability that v = v; at z
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Empirical risk minimization

» empirical risk is
n

_ln ce_l _ T 2
L‘,—nZZ _nz log(a (6 z%),:)

i=1 =1
» choose 6 to minimize empirical risk

» then o(87z) is the predicted probability distribution at z
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Examples
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Examples

» larger 8 corresponds to greater certainty

l16]] ~ 1.25
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Examples

» left-hand plot shows which component of 87z is largest

» right-hand plot shows o (6" z)
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Summary
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Summary

» we judge a probabilistic classifier by its average log likelihood on test data
» this equals the empirical risk, when using the cross-entropy loss

» we un-embed a prediction § € R¥ into a distribution using the logistic un-embedding
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