Parametrized probabilistic classifiers

- ▶ probabilistic classifier G_{θ} depends on parameter θ
- \blacktriangleright we'll choose θ by ERM or RERM
- ▶ we judge probabilistic classifier by average negative log likelihood on a test data set

ERM for probabilistic classifiers

- \blacktriangleright data set u^1,\ldots,u^n , v^1,\ldots,v^n
- > parametrized probabilistic classifier G_{θ} , with predicted distributions $\hat{p}^1, \ldots, \hat{p}^n$ (which depend on θ)
- define a loss function $\ell(\hat{p}, v)$
 - First argument \hat{p} is a *distribution* on \mathcal{V}
 - ▶ second argument v is an *element* of V
- ▶ ERM: choose θ to minimize the average loss $\mathcal{L}(\theta) = \frac{1}{n} \sum_{i=1}^{n} \ell(\hat{p}^{i}, v^{i})$
- **•** RERM: choose θ to minimize the average loss plus a regularizer, $\mathcal{L}(\theta) + \lambda r(\theta)$
- $\lambda \geq 0$ is the regularization hyper-parameter

Cross-entropy loss

Negative log likelihood

▶ the *negative log-likelihood* of v under distribution \hat{p} is

$$\ell^{\mathsf{ce}}(\hat{p}, v) = -\log \hat{p}(v)$$

i.e., the negative log of the probability of the outcome v

- \blacktriangleright ℓ^{ce} takes two arguments, the first is a function p, the second is an element of $\mathcal V$
- \blacktriangleright since $\hat{p}(v) \leq 1$, $\ell^{\mathsf{ce}}(\hat{p},v) \geq 0$
- ▶ $\ell^{ce}(\hat{p}, v) = 0$ only if $\hat{p}(v) = 1$, *i.e.*, we are certain about the outcome and we're right
- we want the negative log-likelihood to be small

Cross-entropy loss

- ▶ $\ell^{ce}(\hat{p}, v)$ is a *loss function* for probabilistic prediction
 - ▶ similarly to loss function $\ell(\hat{y}, y)$ for deterministic predictions, it compares the predicted value \hat{y} with the actual value y
 - \blacktriangleright but it takes a predicted probability \hat{p} instead of a point prediction \hat{y}
 - \blacktriangleright and it takes a raw target v instead of an embedded target $y=\psi(v)$
- \blacktriangleright using this, we can compute the *empirical risk* on a data set u^1, \ldots, u^n , v^1, \ldots, v^n

$$\mathcal{L} = rac{1}{n}\sum_{i=1}^n \ell^{ ext{ce}}(\hat{p}^i,v^i) = rac{1}{n}\sum_{i=1}^n \ell^{ ext{ce}}(G(u^i),v^i)$$

▶ the empirical risk is the average negative log likelihood which we'd like to be small

- ▶ *l*^{ce} is called the *cross-entropy loss*
- \blacktriangleright average cross-entropy loss is the cross entropy, when \hat{p} is constant

Cross-entropy loss

▶ $\ell^{ce}(\hat{p}, v)$ is how implausible v with distribution \hat{p}

- \blacktriangleright ℓ^{ce} small means v is 'typical'
- \blacktriangleright ℓ^{ce} large means v is 'unlikely'
- ▶ other names for l^{ce} : surprise, perplexity, ...

Logistic un-embedding

Un-embedding for probabilistic classification

▶ in point classification, we un-embed $\hat{y} \in \mathsf{R}^K$ as $\hat{v} = v_i$, with $i = \operatorname{argmin}_j ||\hat{y} - \psi_j||_2$

• this un-embedding maps R^k into $\mathcal{V} = \{v_1, \ldots, v_K\}$

▶ for probabilistic classification, we un-embed $\hat{y} \in \mathbf{R}^{K}$ as $\hat{p} = \sigma(\hat{y})$, the distribution on \mathcal{V} given by

$$\hat{p}(v_k) = rac{\exp \hat{y}_k}{\sum_{j=1}^K \exp \hat{y}_j}, \hspace{1em} k = 1, \dots, K$$

 \triangleright σ is called the logistic map, activation function, inverse link function, softargmax function, normalized exponential or softmax function

 \blacktriangleright this un-embedding maps a vector $\hat{y} \in \mathbf{R}^{K}$ to a probability distribution on \mathcal{V}

Properties of logistic map

$$\hat{p}(v_k) = rac{\exp \hat{y}_k}{\sum_{j=1}^K \exp \hat{y}_j}, \hspace{1em} k = 1, \dots, K$$

- ▶ adding constant to each entry of \hat{y} doesn't affect \hat{p}
- ▶ increasing \hat{y}_k (leaving over entries the same) increases $\hat{p}(v_k)$, decreases $\hat{p}(v_j)$ for $j \neq k$
- $\hat{p}(v_k)$ can be close to, but not equal to, zero or one
- $\hat{p}(v_k)$ is close to zero or one when \hat{y}_k is very much less than, or greater than, the other entries
- if $\hat{y} = 0$ (or all its entries are equal), $\hat{p}(v_k) = 1/K$ for all k, so is \hat{p} is the uniform distribution

ERM with logistic un-embedding

ERM with logistic un-embedding

 \blacktriangleright for deterministic classification, we embed $x^i=\phi(u^i),~y^i=\psi(v^i)$, and ERM minimizes

$$\mathcal{L} = rac{1}{n}\sum_{i=1}^n \ell(g_{ heta}(x^i),y^i)$$

resulting predictor is $\hat{v} = \psi^{\dagger}(g_{ heta}(\phi(x)))$

 \blacktriangleright for probabilistic classification, we embed $x^i=\phi(u^i)$, and ERM minimizes

$$\mathcal{L} = rac{1}{n} \sum_{i=1}^n \ell^{ ext{ce}}(\sigma(g_{ heta}(x^i)), v^i)$$

resulting predictor is $\hat{p} = \sigma(g_{ heta}(\phi(x)))$

Logistic loss

- ▶ assume our probability guesses \hat{p} comes from logistic un-embedding, $\hat{p} = \sigma(\hat{y})$
- ▶ what is the cross-entropy loss of our guess \hat{p} , when true label is $v = v_k$?

$$\ell^{ ext{ce}}(\hat{p},v_k) = \ell^{ ext{ce}}(\sigma(\hat{y}),v_k) = -\log\left(rac{\exp \hat{y}_k}{\sum_{j=1}^K \exp \hat{y}_j}
ight) = -\hat{y}_k + \log\left(\sum_{j=1}^K \exp \hat{y}_j
ight)$$

• this is the logistic loss (with $\kappa_i = 1$)

$$\ell(\hat{y},\psi_k) = -\hat{y}_i + \log\left(\sum_{j=1}^K \exp \hat{y}_j
ight)$$

so with logistic un-embedding, *logistic loss* is the cross-entropy loss, and the resulting empirical risk is the *average negative log-likelihood*

Interpreting multi-class logistic regression

logistic regression yields probabilistic classifier

$$\hat{p} = \sigma(\hat{y}) = rac{\exp \hat{y}}{1^ op \exp \hat{y}}, \qquad \hat{y} = heta^ op x$$

- ▶ assume $x_1 = 1$ is constant feature, other features standardized
- First row of θ , θ_1^{T} , is \hat{y} when $x_{2:d} = 0$, *i.e.*, all non-constant features take their mean value (zero)
- corresponding distribution is $\hat{p} = \sigma(\theta_1)$
- ▶ $heta_{ij}$ gives effect of x_i on \hat{p}_j

Logistic un-embedding for Boolean classification

Boolean probabilistic classifier

- ▶ Boolean case: $\mathcal{V} = \{v_1, v_2\}$
- ▶ given u, we guess $\hat{p} = G(u)$
- **b** to specify the function \hat{p} , we have to give the two numbers $\hat{p}(v_1)$ and $\hat{p}(v_2)$
- ▶ we can just give one of them, since they sum to one
- ▶ e.g., we can give the number $\hat{p}(v_2)$, the probability that $v = v_2$; we have $\hat{p}(v_1) = 1 \hat{p}(v_2)$

• example: to predict probability of rain or shine, we can give just $\hat{p}(\text{RAIN})$, since $\hat{p}(\text{SHINE}) = 1 - \hat{p}(\text{RAIN})$

Un-embedding for Boolean probabistic classification

▶ the function
$$\sigma(\hat{y}) = rac{1}{1+e^{-\hat{y}}}$$
 is called the *sigmoid* function

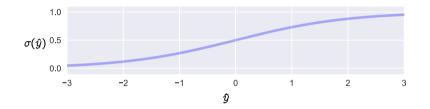
- we use σ for both the sigmoid and the logistic functions, since both are activation functions mapping \mathbf{R}^m to probability distributions on \mathcal{V}
- ig
 hi in the Boolean case, can use $\hat{y}\in {\sf R}$ instead of $\hat{y}\in {\sf R}^2$
- when $\mathcal{V} = \{v_1, v_2\}$, we can un-embed via

$$\hat{p}(v_1)=\sigma(\hat{y}) \qquad \hat{p}(v_2)=1-\sigma(\hat{y})$$

 \blacktriangleright maps $\hat{y} \in \mathsf{R}$ to a distribution on $\mathcal V$

▶ the inverse function
$$\hat{y} = \log rac{\hat{p}(v_1)}{1 - \hat{p}(v_1)}$$
 is called the *log-odds* or *logit* function

Sigmoid function



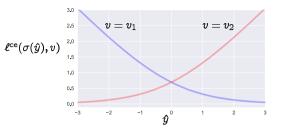
▶ the sigmoid function
$$\sigma(\hat{y}) = rac{1}{1+e^{-\hat{y}}}$$

$$\blacktriangleright$$
 has symmetry property $\sigma(-\hat{y}) = 1 - \sigma(\hat{y})$

Boolean logistic loss

▶ using the sigmoid un-embedding, we have

$$\begin{split} \ell^{\rm ce}(\hat{p}^{i},v^{i}) &= \ell^{\rm ce}(\sigma(\hat{y}^{i}),v^{i}) \\ &= \begin{cases} -\log\sigma(\hat{y}^{i}) & \text{if } v^{i} = v^{1} \\ -\log(1-\sigma(\hat{y}^{i})) & \text{if } v^{i} = v^{2} \end{cases} \\ &= \begin{cases} \log(1+e^{-\hat{y}^{i}}) & \text{if } v^{i} = v^{1} \\ \log(1+e^{\hat{y}^{i}}) & \text{if } v^{i} = v^{2} \end{cases} \\ &= \begin{cases} \ell(\hat{y},1) & \text{if } v^{i} = v^{1} \\ \ell(\hat{y},-1) & \text{if } v^{i} = v^{2} \end{cases} \end{split}$$



 so with this un-embedding the cross-entropy loss is the Boolean logistic loss empirical risk is

$$\mathcal{L} = \frac{1}{n}\sum_{i=1}^n \boldsymbol{\ell}^{\mathsf{ce}}(\hat{p}^i, v^i) = \frac{1}{n} \bigg(\sum_{i:v^i = v_1} -\log(\sigma(\theta^{\mathsf{T}}x)) + \sum_{i:v^i = v_2} -\log(\sigma(-\theta^{\mathsf{T}}x))\bigg)$$

- \blacktriangleright choose θ to minimize empirical risk
- ▶ then $\sigma(\theta^T x)$ is the predicted probability that $v = v_1$ at x

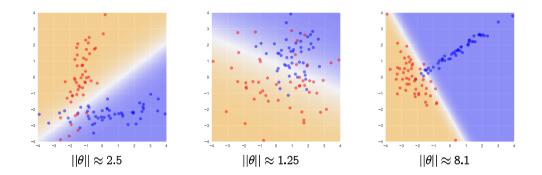
empirical risk is

$$\mathcal{L} = rac{1}{n}\sum_{i=1}^n \ell^{\mathsf{ce}} = rac{1}{n}\sum_{i=1}^n -\log(\sigma(heta^{^{^{^{^{^{^{\! }}}}}}x^i)_{y^i})$$

- \blacktriangleright choose θ to minimize empirical risk
- ▶ then $\sigma(\theta^T x)$ is the predicted probability distribution at x

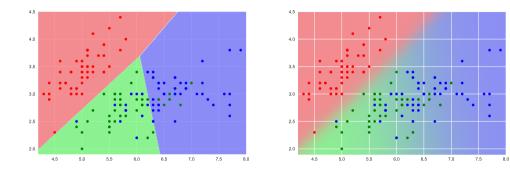
Examples

Examples



larger θ corresponds to greater certainty

Examples



▶ left-hand plot shows which component of $\theta^T x$ is largest

▶ right-hand plot shows $\sigma(\theta^{\mathsf{T}}x)$

Summary

- ▶ we judge a probabilistic classifier by its average log likelihood on test data
- ▶ this equals the empirical risk, when using the cross-entropy loss
- \blacktriangleright we un-embed a prediction $\hat{y} \in \mathsf{R}^K$ into a distribution using the logistic un-embedding