# Records and embedding

#### Raw data

- raw data pairs are (u, v), with  $u \in \mathcal{U}$ ,  $v \in \mathcal{V}$
- $\blacktriangleright$   $\mathcal{U}$  is set of all possible input values
- $\blacktriangleright~\mathcal{V}$  is set of all possible output values
- each u is called a record
- ▶ typically a record is a tuple, or list,  $u = (u_1, u_2, ..., u_r)$
- each u<sub>i</sub> is a *field* or *component*, which has a *type*, *e.g.*, real number, Boolean, categorical, ordinal, word, text, audio, image, parse tree (more on this later)
- e.g., a record for a house for sale might consist of

(address, photo, description, house/apartment?, lot size, ..., # bedrooms)

#### Feature map

• learning algorithms are applied to (x, y) pairs,

$$x = \phi(u), \qquad y = \psi(v)$$

- $\blacktriangleright \phi: \mathcal{U} \to \mathbf{R}^d$  is the *feature map* for u
- $\psi: \mathcal{V} \to \mathbf{R}^m$  is the *feature map* for v
- ▶ feature maps transform *records* into *vectors*
- feature maps usually work on each field separately,

$$\phi(u_1,\ldots,u_r)=(\phi_1(u_1),\ldots,\phi_r(u_r))$$

•  $\phi_i$  is an *embedding* of the type of field i into a vector

#### Embeddings

> embedding puts the different field types on an equal footing, *i.e.*, vectors

▶ some embeddings are simple, *e.g.*,

$$\blacktriangleright$$
 for a number field ( $\mathcal{U}=\mathsf{R}$ ),  $\phi_i(u_i)=u_i$ 

$$lacksim$$
 for a Boolean field,  $\phi_i(u_i)= \left\{egin{array}{cc} 1 & u_i={}_{
m TRUE} \ -1 & u_i={}_{
m FALSE} \end{array}
ight.$ 

- ▶ color to (R,G,B)
- others are more sophisticated
  - text to TFIDF histogram
  - word2vec (maps words into vectors)
  - pre-trained neural network for images (maps images into vectors)

(more on these later)

### **Faithful embeddings**

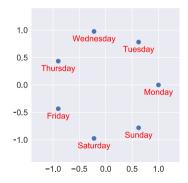
- a *faithful* embedding satisfies
  - $\phi(u)$  is near  $\phi( ilde{u})$  when u and  $ilde{u}$  are 'similar'
  - $\phi(u)$  is not near  $\phi(\tilde{u})$  when u and  $\tilde{u}$  are 'dissimilar'

- ▶ lefthand concept is *vector distance*
- righthand concept depends on field type, application

- interesting examples: names, professions, companies, countries, languages, ZIP codes, cities, songs, movies
- ▶ we will see later how such embeddings can be constructed

### **Examples**

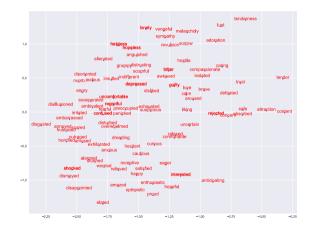
- ▶ geolocation data:  $\phi(u) = (Lat, Long)$  in  $\mathbb{R}^2$  or embed in  $\mathbb{R}^3$  (if data points are spread over planet)
- ▶ day of week (each day is 'similar' to the day before and day after)



- $\blacktriangleright$  word2vec maps a dictionary of 3 million words (and short phrases) into  $R^{300}$
- ▶ developed from a data set from Google News containing 100 billion words
- ▶ assigns words that frequently appear near each other in Google News to nearby vectors in R<sup>300</sup>

#### Example: word2vec

(showing only  $x_1$  and  $x_2$ , for a selection of words associated with emotion)



- ▶ Imagenet is an open image database with 14m labeled images in 1000 classes
- ▶ vgg16 maps images u (224 × 224 pixels with R,G,B components) to  $x \in \mathbf{R}^{4096}$
- ▶ vgg16 was originally developed to classify the image labels
- repurposed as general image feature mapping
- $\blacktriangleright$  vgg16 has neural network form with 16 layers, with input u, output x

### vgg16 embedding



 $\blacktriangleright$  images  $u^i$  for  $i=1,2,\ldots,6$  are embedded to  $x^i=\phi(u^i)\in\mathsf{R}^{4096}$ 

igstarrow matrix of pairwise distances  $d_{ij} = ||x^i - x^j||_2$ 

$$d = \begin{bmatrix} 0 & 109.7 & 97.9 & 96.2 & 107.4 & 103.0 \\ 0 & 63.9 & 71.6 & 109.4 & 109.2 \\ 0 & 69.4 & 101.5 & 101.4 \\ 0 & 96.5 & 96.8 \\ 0 & 86.6 \\ 0 & 0 \end{bmatrix}$$

### Standardized embeddings

we usually assume that an embedding is standardized

- entries of  $\phi(u)$  are centered around 0
- entries of  $\phi(u)$  have RMS value around 1
- $\blacktriangleright$  roughly speaking, entries of  $\phi(u)$  range over  $\pm 1$

with standardized embeddings, entries of feature map

$$\phi(u_1,\ldots,u_r)=(\phi_1(u_1),\ldots,\phi_r(u_r))$$

are all comparable, *i.e.*, centered around zero, standard deviation around one

•  $\operatorname{rms}(\phi(u) - \phi(\tilde{u}))$  is reasonable measure of how close records u and  $\tilde{u}$  are

#### Standardization or *z*-scoring

• suppose  $\mathcal{U} = \mathbf{R}$  (field type is real numbers)

 $\blacktriangleright$  for data set  $u^1,\ldots,u^n\in\mathsf{R}$ 

$$ar{u}=rac{1}{n}\sum_{i=1}^n u^i \qquad ext{std}(u)=\left(rac{1}{n}\sum_{i=1}^n (u^i-ar{u})^2
ight)^rac{1}{2}$$

▶ the *z*-score or standardization of *u* is the embedding

$$x = ext{zscore}(u) = rac{1}{ ext{std}(u)}(u - ar{u})$$

- > ensures that embedding values are centered at zero, with standard deviation one
- > z-scored features are very easy to interpret:  $x = \phi(u) = +1.3$  means that u is 1.3 standard deviations above the mean value

#### Log transform

- ▶ old school rule-of-thumb: if field u is positive and ranges over wide scale, embed as  $\phi(u) = \log u$  (or  $\log(1+u)$  if u is sometimes zero), then standardize
- examples: web site visits, ad views, company capitalization
- interpretation as faithful embedding:
  - > 20 and 22 are similar, as are 1000 and 1100
  - but 20 and 120 are not similar
  - ▶ *i.e.*, you care about fractional or relative differences between raw values

(here, log embedding is faithful, affine embedding is not)

► can also apply to output or label field, *i.e.*,  $y = \psi(v) = \log v$  if you care about percentage or fractional errors; recover  $\hat{v} = \exp(\hat{y})$ 

#### **Example: House price prediction**

- $\blacktriangleright$  we want to predict house selling price v from record  $u = (u_1, u_2)$ 
  - ▶  $u_1 \equiv \text{area} (\text{sq. ft.})$
  - ▶  $u_2 = #$  bedrooms
- ▶ we care about relative error in price, so we embed v as  $\psi(v) = \log v$  (and then standardize)
- $\blacktriangleright$  we standardize fields  $u_1$  and  $u_2$

$$x_1 = rac{u_1 - \mu_1}{\sigma_1}, \qquad x_2 = rac{u_2 - \mu_2}{\sigma_2}$$

- $ightarrow \mu_1 = ar{u}_1$  is mean area
- $\blacktriangleright$   $\mu_2 = ar{u}_2$  is mean number of bedrooms
- $\blacktriangleright$   $\sigma_1 = \mathsf{std}(u_1)$  is std. dev. of area
- ▶  $\sigma_2 = \operatorname{std}(u_2)$  is std. dev. of # bedrooms

(means and std. dev. are over our data set)

### Example: House price linear regression predictor

- predict  $y = \log v$  (log of price) from standardized area and # bedrooms
- ▶ linear predictor:  $\hat{y} = \theta_1 + \theta_2 x_1 + \theta_3 x_2$
- ▶ in terms of original raw data:

$$\hat{v}=\exp\left( heta_1+ heta_2rac{u_1-\mu_1}{\sigma_1}+ heta_3rac{u_2-\mu_2}{\sigma_2}
ight)$$

- exp undoes log embedding of house price
- ▶ readily interpretable, *e.g.*, what does  $\theta_2 = 0.7$  mean?

# Vector embeddings

#### Vector embeddings for real field

- $\blacktriangleright$  we can embed a field u into a vector  $x = \phi(u) \in \mathsf{R}^k$
- useful even when  $\mathcal{U} = \mathbf{R}$  (real field)
- polynomial embedding:

$$\phi(u) = (1, u, u^2, \dots, u^d)$$

piecewise linear embedding:

$$\phi(u) = (1, (u)_{-}, (u)_{+})$$

where  $(u)_{-} = \min(u, 0)$ ,  $(u)_{+} = \max(u, 0)$ 

Inear predictor with these features yield polynomial and piecewise linear predictors of raw features

### **Categorical data**

data field is *categorical* if it only takes a finite number of values

- *i.e.*,  $\mathcal{U}$  is a finite set  $\{\alpha_1, \ldots, \alpha_k\}$ ;  $\alpha_i$  are *category labels*
- $\blacktriangleright$  we often use category labels  $1, \ldots, k$ , and refer to 'category i'

examples:

- ▶ TRUE/FALSE (two values, also called Boolean)
- ▶ APPLE, ORANGE, BANANA (three values)
- ▶ MONDAY, ..., SUNDAY (seven values)
- ZIP code (around 40000 values)
- countries (around 185 values)
- languages (several thousand spoken by large numbers of people)

#### **One-hot embedding for categoricals**

- $\blacktriangleright \ \mathcal{U} = \{1, \dots, k\}$
- one-hot embedding:  $\phi(i) = e_i \in \mathsf{R}^k$
- examples:
  - $\phi$ (APPLE) = (1,0,0),  $\phi$ (ORANGE) = (0,1,0),  $\phi$ (BANANA) = (0,0,1)
  - ▶  $\phi(\text{TRUE}) = (1,0), \quad \phi(\text{FALSE}) = (0,1)$  (another embedding of Boolean, into  $\mathsf{R}^2$ )
  - $\phi$ (Mandarin) =  $e_1$ ,  $\phi$ (English) =  $e_2$ ,  $\phi$ (Hindi) =  $e_3$ , ...,  $\phi$ (Azeri) =  $e_{55}$ , ...
- standardizing these features handles unbalanced data

#### Reduced one-hot embedding for categoricals

 $\blacktriangleright \ \mathcal{U} = \{1, \dots, k\}$ 

- ▶ one-hot embedding maps  $\mathcal{U}$  to  $\mathbf{R}^k$ ; reduced one-hot embedding maps  $\mathcal{U}$  to  $\mathbf{R}^{k-1}$
- choose one value, say i = k, as the *default* or *nominal* value
- $\phi(k) = 0 \in \mathbb{R}^{k-1}$ , *i.e.*, map the default value to (vector) 0
- $\phi(i) = e_i \in \mathsf{R}^{k-1}, \ i = 1, \dots, k-1$
- ▶ example:  $U = \{\text{True}, \text{False}\}$  with False as default

$$\phi(\text{TRUE}) = 1, \qquad \phi(\text{FALSE}) = 0$$

(a common embedding of Booleans into R)

### **Ordinal data**

- ordinal data is categorical, with an order
- example: Likert scale, with values

STRONGLY DISAGREE, DISAGREE, NEUTRAL, AGREE, STRONGLY AGREE

- > can embed into R with values -2, -1, 0, 1, 2
- ▶ or treat as categorical, with one-hot embedding into R<sup>5</sup>
- example: number of bedrooms in house
  - can be treated as a real number
  - ▶ or as an ordinal with (say) values 1,...,6

# Feature engineering

#### **Feature engineering**

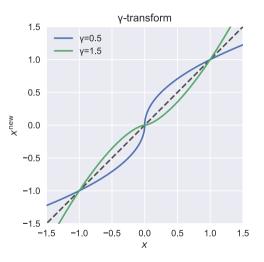
basic idea:

- start with some features
- ▶ then process or transform them to produce new ('engineered') features
- use these new features in your predictor
- ▶ was it a good idea? did it improve your predictor?
  - > train your model with original features and validate performance
  - > train your model with new features and validate performance
  - ▶ if performance with new features is better, your feature engineering was successful

- $\blacktriangleright$  modify individual features: replace original feature  $x_i$  with modified or transformed feature  $x_i^{new}$ 
  - $\blacktriangleright$  simple example: standardize,  $x_i^{
    m new} = (x_i \mu_i)/\sigma_i$
- create multiple features from each original feature
  - **>** simple example: powers, replace  $x_i$  with  $(x_i, x_i^2, \dots, x_i^q)$
- create new features from multiple original features
  - ▶ simple example: product,  $x_i^{\text{new}} = x_k x_l$

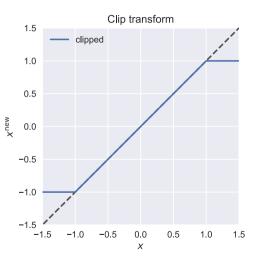
### Gamma-transform

• 
$$\gamma$$
-transform:  $x_i^{ ext{new}} = ext{sign}(x_i) |x_i|^{\gamma_i}$ ,  $\gamma_i > 0$ 



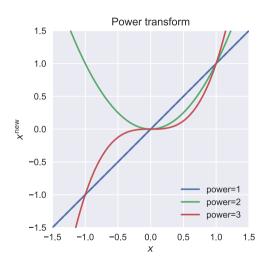
# Clipping

$$x_i^{ ext{new}} = \left\{egin{array}{cc} u_i & x_i > u_i \ x_i & l_i \leq x_i \leq u_i \ l_i & x_i < l_i \end{array}
ight.$$



#### **Powers**

• replace  $x_i$  with  $(x_i, x_i^2, \ldots, x_i^q)$ 

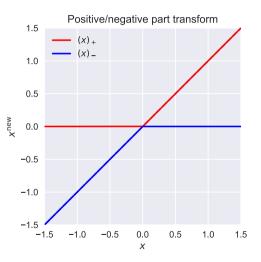


### Split into positive and negative parts

- ▶ replace  $x_i$  with  $((x_i)_+, (x_i)_-)$
- $\blacktriangleright$  or, split into negative, middle, and high values: replace  $x_i$  with

$$((x_i+1)_-,\operatorname{sat}(x_i),(x_i-1)_+)$$

sat(a) = min(1, max(x, -1)) is the saturation function



### Creating new features from multiple original features

- can be used to model *interactions* among features
- ▶ examples: for i < j
  - $\blacktriangleright$  maximum: max $(x_i, x_j)$
  - **>** product:  $x_i x_j$
- example: all monomials up to degree 3 of  $(x_1, x_2)$ :

$$(x_1, x_2, x_1^2, x_1x_2, x_2^2, x_1^3, x_1^2x_2, x_1x_2^2, x_2^3)$$

linear model with these features gives arbitrary degree 3 polynomial of  $(x_1, x_2)$ 

#### Interpreting products of features as interactions

- ▶ suppose  $x_i$  are Boolean, with values 0, 1, for  $i = 1, \ldots, d$ , e.g., representing patient symptoms
- $\blacktriangleright$  create new 'interaction' features  $x_i x_j$ , for i < j, of which there are d(d-1)/2
- linear regression model (for d = 3) is

 $heta_1x_1+ heta_2x_2+ heta_3x_3+ heta_{12}x_1x_2+ heta_{13}x_1x_3+ heta_{23}x_2x_3$ 

- $ightarrow heta_1$  is the amount our prediction goes up when  $x_1=1$
- $ightarrow heta_3$  is the amount our prediction goes up when  $x_3=1$
- $\triangleright$   $\theta_{13}$  is the amount our prediction goes up when  $x_1$  and  $x_3$  are both 1 (in addition to  $\theta_1 + \theta_3$ )
- ▶ e.g., with  $\theta_{13}$  large, the simultaneous presence of symptoms 1 and 3 makes our estimate go up a lot

## Quantizing

▶ specify *bin boundaries*  $b_1 < b_2 < \cdots < b_k$ 

- ▶ partitions into *bins* or *buckets*  $(-\infty, b_1]$ ,  $(b_1, b_2]$ , ...  $(b_{k-1}, b_k]$ ,  $(b_k, \infty)$
- $\blacktriangleright$  common choice of bin boundaries: quantiles of  $x_i$ , e.g., deciles
- $\blacktriangleright$  replace  $x_i$  with

$$egin{array}{cccc} e_1 & x_i \leq b_1 \ e_2 & b_1 < x_i \leq b_2 \ dots \ e_k & b_{k-1} < x_i \leq b_k \ dots \ e_{k+1} & b_k < x_i \end{array}$$

*i.e.*,  $x_i$  maps to  $e_l$ , if  $x_i$  is in bin l

#### Feature engineering pipeline

- feature transformations can be done multiple times
- $\blacktriangleright$  start by embedding original record u into vector feature  $x^0 \in \mathsf{R}^{d_0}$  using  $\widetilde{\phi}, \, x^0 = \widetilde{\phi}(u)$
- $\blacktriangleright$  superscript 0 in  $x^0$  and  $d^0$  means starting point for feature engineering
- $\blacktriangleright$  transform  $x^0$  using a feature engineering transform  $\mathcal{T}^1$ , to get  $x^1 = \mathcal{T}^1(x^0) \in \mathsf{R}^{d_1}$
- **•** superscript 1 in  $x^1$  and  $d^1$  means 'first step' of feature engineering
- $\blacktriangleright$  repeat M times to get final embedding  $x=x^M=arphi^M(x^{M-1})$
- final feature map is a composition:

$$\phi = \mathcal{T}^M \circ T^{M-1} \circ \cdots \circ \mathcal{T}^1 \circ ilde{\phi}$$

called feature engineering pipeline

# Automatic feature generation

#### Hand crafted versus automatic features

- features and feature engineering described above generally done by hand, using experience
- > can also develop feature mappings automatically, directly from some data
- > examples: word2vec, vgg16 were developed automatically (from very large data sets)
- ▶ we'll later see some of these methods (PCA, neural nets, ...)

# Summary

- > raw features are mapped to vectors for subsequent processing
- ▶ feature maps can range from simple to complex
- use validation to choose among different candidate feature maps
- > sometimes the original feature map is followed by subsequent transformations, called feature engineering
- ▶ we'll see later how feature mappings can be derived from data, as opposed to by hand