Penalty functions and error histograms



Loss and penalty functions

» empirical risk (or average loss) is £(§) = £ 37 | L9, y%), with §° = ge(z?)

» the loss function £(§, y) penalizes deviation between the predicted value § and the observed value y
» common form for loss function: £(9,y) = p(9 — v)

» p is the penalty function

» e.g., the square penalty p™(r) = 72 (for scalar y)

» r =y — y is the prediction error or residual

» for scalar y, r > 0 is over-estimating; r < 0 is under-estimating



Penalty functions

» the penalty function tells us how much we object to different values of prediction error
» usually p(0) =0 and p(r) > 0 for all r

» if p is symmetric, i.e., p(—r) = p(r), we care only about the magnitude (absolute value) of prediction
error

» if p is asymmetric, i.e., p(—r) # p(r), it bothers us more to over- or under-estimate



Square versus absolute value penalty
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» for square penalty p*¥(r) = r2
» for small prediction errors, penalty is very small (small squared)

» for large prediction errors, penalty is very large (large squared)

» for absolute penalty p**(r) = |r|
» for small prediction errors, penalty is large (compared to square)

» for large prediction errors, penalty is small (compared to square)



Tilted absolute penalty function
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» for 7 = 1/2, same as absolute penalty (scaled by 1/2); same penalty for under-estimating and over-

estimating

» for 7 > 1/2, worse (higher penalty) to under-estimate than over-estimate

» for 7 < 1/2, worse (higher penalty) to over-estimate than under-estimate



Predictors and choice of penalty function

» penalty function expresses how you feel about large, small, positive, or negative prediction errors
» different choices of penalty function yield different predictor parameters

» choice of penalty function shapes the histogram of prediction errors, i.e.,

(usually divided into bins and displayed as bar graph distribution)
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» artificial data with n = 300, m = 1, and d = 31, using 50/50 test/train split

> r' =0"z? — ¢, first feature is constant; plots show histogram of residuals 7!,
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Robust fitting



Outliers

» in some applications, a few data points are ‘way off’, or just ‘wrong’

» occurs due to transcription errors, error in decimal point position, etc.

» these points are called outliers

» even a few outliers in a data set can result in ERM picking a poor predictor

» several standard methods are used to remove outliers, or reduce their impact

» one simple method:

p» create predictor from data set
» flag data points with large prediction errors as outliers

» remove them from the data set and repeat

» it's also possible to use a penalty function that is less sensitive to outlier data points
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Robust penalty functions

» we say a penalty function is robust if it has low sensitivity to outliers

» robust penalty functions grow more slowly for large prediction error values than the square penalty
» and so ‘allow’ the predictor to have a few large prediction errors (presumably for the outliers)

» so they handle outliers more gracefully

» a robust predictor might fit, e.g., 98% of the data very well
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Huber loss

Huber
—— quadratic
— affine
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» the Huber penalty function is

r? if 7| <a
a2lr| —a) if|r|>a
» o is a positive parameter

» quadratic for small r, affine for large 7, with transition at value r = o
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Huber loss

» linear growth for large » makes fit less sensitive to outliers

» ERM with Huber loss is called a robust prediction method
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Log Huber

log Huber
—— logarithmic
quadratic

» quadratic for small y, logarithmic for large y

dh _ y2 if [y| <a
Py =9, 2y
a?(1—2log(a) +log(y?)) if ly| >«

» diminishing incremental penalty at large y
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Log Huber
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» even less sensitive to outliers than Huber

15



Error histogram

square

Huber

log Huber

training error

test error

16



Quantile regression
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Quantile regression

» ERM or RERM with tilted penalty pt® is called quantile regression
» intuition:

» T > 1/2 makes it worse to under-estimate, so predictions are ‘high’

» T < 1/2 makes it worse to over-estimate, so predictions are ‘low’
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Connection to quantiles

» assume the predictor has an offset (say, 81) that is not regularized
» go(z) = 61 + Jo(z), where §g does not depend on 81 (e.g., linear predictor with z1 = 1)
» regularizer 7(8) does not depend on 81 (e.g., ridge regression with 7(8) =62 + --- + 62)

» then on the training set, with RERM predictor

» the (1 — 7)-quantile of residuals is zero

» i.e., the fraction of data for which we over-estimate (r > 0) is 7
» hence the name quantile regression
» if predictor generalizes, we'd expect the fraction of test data for which we over-estimate is around 7

» can create predictors for multiple 7s, which gives multiple quantile estimates for a given z
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Why the (1 — 7)-quantile of residuals is zero

» let's fix 62,...,6p
» 61 must minimize the function £(6) 4+ Ar(6)

» 7(0) doesn’t depend on 61, so 81 must minimize

1w = i
L) = oy P (61 + Go(z”) — )
=1
> §o(z) does not depend on 81, so 6, is the T-quantile of y* — o(z%), i =1,...,7n

» so fraction of 7 for which yi — §9(:Ei) < 6; is around T
» and so, fraction of 4 for which 7* = §* — y* = 01 + ge(z*) — y* > 0 is around T

» i.e., fraction of data points for which we over-estimate is around 7
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Example
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» plots show histogram of residuals training data, for 7 = 0.1, 0.5, 0.9
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Example: Quantile straight line regression
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» we'll fit straight line (affine) prediction model using loss I(4,y) = p& (9 — y), 7 = 0.1, 0.5, 0.9



Example: Quantile straight line regression
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» three quite different predictors
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Example: Quantile straight line regression
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Summary
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Summary

» loss function is often expressed as a penalty function of the residual r =9 — y
» the loss function expresses how we object to different values of residual
» different choices of loss function lead to different ERM predictors

» specific applications include

» robust fitting: fitting data with some outliers

» quantile regression: fitting data with a specified fraction of over-estimation
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