#### Multi-class classification

- multi-class classification with  $\mathcal{V} = \{1, \dots, K\}$
- $\blacktriangleright$  embed the K classes as  $\psi_1, \ldots, \psi_K \in \mathsf{R}^m$
- $\blacktriangleright$  use nearest-neighbor un-embedding,  $\hat{v} = \operatorname{argmin}_i ||\hat{y} \psi_i||_2$
- use RERM to fit predictor

validate using Neyman-Pearson metric on test data

- ▶ Neyman-Pearson metric is  $\sum_j \kappa_j E_j$
- $\blacktriangleright$   $E_j$  is rate of mistaking v = j
- $\triangleright$   $\kappa_j$  is our relative distaste for mistaking v = j
- ▶ with  $\kappa_1 = \cdots = \kappa_K = 1$ , reduces to error rate

# Signed distances

### When is a vector closer to one given vector than another?



▶ when is  $\hat{y} \in \mathbf{R}^m$  closer to *a* than *b*, where  $a \neq b$ ?

▶ square both sides of  $||\hat{y} - a||_2 < ||\hat{y} - b||_2$  to get  $2(b - a)^{\mathsf{T}}\hat{y} - ||b||_2^2 + ||a||_2^2 < 0$ 

► the decision boundary is given by  $||\hat{y} - a||_2 = ||\hat{y} - b||_2$ , *i.e.*,  $2(b - a)^{\top}\hat{y} - ||b||_2^2 + ||a||_2^2 = 0$ 

▶ this defines a hyperplane  $\mathcal{H}$  in  $\mathbb{R}^m$ , with normal vector b - a, passing through the midpoint (a + b)/2

# Signed distance to the decision boundary

▶ the signed distance of  $\hat{y}$  to  $\mathcal{H}$  is

$$D(\hat{y}, a, b) = rac{2(b-a)^{ op}\hat{y} - ||a||_2^2 + ||b||_2^2}{2||b-a||_2}$$

- ▶  $D(\hat{y}, a, b) < 0$  when  $\hat{y}$  is closer to a than b
- ▶  $|D(\hat{y}, a, b)|$  is the distance of  $\hat{y}$  to  $\mathcal{H}$
- ▶  $D(\hat{y}, a, b) = 0$  gives the decision boundary
- ▶  $D(\hat{y}, a, b)$  is an affine function of  $\hat{y}$



#### Signed distances

- $\blacktriangleright$  now consider un-embedding the prediction  $\hat{y} \in \mathsf{R}^m$ , *i.e.*, finding which  $\psi_i$  is closest
- ▶ define signed distance functions  $D_{ij}$ , for  $i \neq j$ , as

$$D_{ij}(\hat{y}) = D(\hat{y},\psi_i,\psi_j) = rac{2(\psi_j-\psi_i)^{ op}\hat{y} - ||\psi_i||_2^2 + ||\psi_j||_2^2}{2||\psi_j-\psi_i||_2}$$

- $igstarrow D_{ij}(\hat{y}) < 0$  means  $\hat{y}$  is closer to  $\psi_i$  than  $\psi_j$
- ▶  $\hat{y}$  is closest to  $\psi_i$  when  $D_{ij} < 0$  for  $j \neq i$ , or

$$\max_{j 
eq i} D_{ij}(\hat{y}) < 0$$

 $\blacktriangleright$  loss function should encourage this, when  $y=\psi_i$ 

#### **Examples**

 $\blacktriangleright$  Boolean, with  $\psi_1 = -1$  and  $\psi_2 = 1$ 

$$D_{12}(\hat{y}) = \hat{y}, \qquad D_{21}(\hat{y}) = -\hat{y}$$

so, when y=-1, we'd like  $\hat{y}<$  0; when y=+1, we'd like  $\hat{y}>$  0

▶ one-hot, with  $\psi_j = e_i$ , j = 1, ..., K

$$D_{ij}=rac{y_j-y_i}{\sqrt{2}}, \quad i
eq j$$

so, when  $y = e_i$ , we want  $\max_{j \neq i} D_{ij}(\hat{y}) < 0$ , *i.e.*,  $\operatorname{argmax}_j \hat{y}_j = i$ 

# Multi-class loss functions

# Loss function for multi-class classification

 $\blacktriangleright$  we need to give the K functions of  $\hat{y}$ 

$$\ell(\hat{y},\psi_i), \quad i=1,\ldots,K$$

- $\blacktriangleright~\ell(\hat{y},\psi_i)$  is how much we dislike predicting  $\hat{y}$  when  $y=\psi_i$
- ▶ loss function  $\ell(\hat{y}, \psi_i)$  should be
  - **>** small when  $\max_{j \neq i} D_{ij}(\hat{y}) < 0$
  - $\blacktriangleright$  larger when ma $imes_{j
    eq i} D_{ij}(\hat{y})
    ot< 0$

▶ Neyman-Pearson loss is

$$\ell(\hat{y},\psi_i) = egin{cases} 0 & \max_{j
eq i} D_{ij} < 0 \ \kappa_i & ext{otherwise} \end{cases}$$

*i.e.*, zero when  $\psi_i$  is decoded correctly,  $\kappa_i$  otherwise

- ▶ it's hard to minimize  $\mathcal{L}(\theta)$
- ▶ we do better with a *proxy loss* that
  - > approximates, or at least captures the flavor of, the Neyman-Pearson loss
  - ▶ is more easily optimized (*e.g.*, is convex, differentiable)

### Multi-class hinge loss

▶ hinge loss is

$$\ell(\hat{y},\psi_i)=\kappa_i \max_{j
eq i}(1+D_{ij}(\hat{y}))_+$$

 $\blacktriangleright~\ell(\hat{y},\psi_i)$  is zero when  $\hat{y}$  is correctly un-embedded, with a margin at least one

- convex but not differentiable
- ▶ with quadratic regularization, called *multi-class SVM*
- ▶ for Boolean embedding with  $\psi_1 = -1$ ,  $\psi_2 = 1$ , reduces to

$$\ell(\hat{y},-1) = \kappa_1(1+\hat{y})_+, \qquad \ell(\hat{y},1) = \kappa_2(1-\hat{y})_+$$

usual hinge loss when  $\kappa_1 = 1$ 

# Multi-class hinge loss



 $\hat{y}_1$ 

# Multi-class logistic loss

▶ logistic loss is

$$\ell(\hat{y}, \psi_i) = \kappa_i \log \left( \sum_{j=1}^K \exp(D_{ij}(\hat{y})) 
ight)$$

(where we take  $D_{jj} = 0$ )

- convex and differentiable
- called multi-class logistic regression
- ▶ for Boolean embedding with  $\psi_1 = -1$ ,  $\psi_2 = 1$ , reduces to

$$\ell(\hat{y},-1) = \kappa_1 \log(1+e^{\hat{y}}), \qquad \ell(\hat{y},1) = \kappa_2 \log(1+e^{-\hat{y}})$$

usual logistic loss when  $\kappa_1=1$ 

# Multi-class logistic loss



# Log-sum-exp function

▶ the function  $f : \mathbb{R}^n \to \mathbb{R}$ 

$$f(x) = \log \sum_{i=1}^n \exp(x_i)$$

is called the *log-sum-exp* function

- ▶ it is a convex differentiable approximation to the max function
- ▶ sometimes called the *softmax* function; but that term is also used for other functions
- we have

$$\max\{x_1,\ldots,x_n\}\leq f(x)\leq \max\{x_1,\ldots,x_n\}+\log(n)$$

# Example: Iris

- ▶ famous example dataset by Fisher, 1936
- ▶ measurements of 150 plants, 50 from each of 3 species
- ▶ iris setosa, iris versicolor, iris virginica
- ▶ four measurements: sepal length, sepal width, petal length, petal width

# Example: Iris



### Classification with two features



- using only sepal\_length and sepal\_width
- $\blacktriangleright$  one-hot embedding, multi-class logistic loss with  $\kappa_i = 1$  for all i, trained on all data

• confusion matrix 
$$C = \begin{bmatrix} 50 & 0 & 0 \\ 0 & 38 & 13 \\ 0 & 12 & 37 \end{bmatrix}$$

# Classification with all four features

- ▶ use all four features
- $\blacktriangleright$  one-hot embedding, multi-class logistic loss with  $\kappa_i =$  for all *i*, trained on all data

• confusion matrix 
$$C = \begin{bmatrix} 50 & 0 & 0 \\ 0 & 49 & 1 \\ 0 & 1 & 49 \end{bmatrix}$$

# Summary

- ▶ loss functions for multi-class classification should encourage correct un-embedding, i.e.,
  - $\blacktriangleright$   $\ell(\hat{y},\psi_i)$  is small when  $\hat{y}$  is closest to  $\psi_i$
  - $\blacktriangleright$   $\ell(\hat{y},\psi_i)$  is not small when  $\hat{y}$  is not closest to  $\psi_i$
- ▶ most common losses are multi-class hinge loss and multi-class logistic
  - > associated classifiers are called multi-class SVM and multi-class logistic
  - both losses are convex, so easy to solve ERM or RERM problems