
Multi-class classification

multi-class classification with

embed the classes as R

use nearest-neighbor un-embedding,

use RERM to fit predictor

validate using Neyman-Pearson metric on test data

Neyman-Pearson metric is

is rate of mistaking

is our relative distaste for mistaking

with , reduces to error rate
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Signed distances
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When is a vector closer to one given vector than another?

when is R closer to than , where ?

square both sides of to get

T

the decision boundary is given by , i.e.,

T

this defines a hyperplane in R , with normal vector , passing through the midpoint
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Signed distance to the decision boundary

the signed distance of to is

T

when is closer to than

is the distance of to

gives the decision boundary

is an affine function of

5



Signed distances

now consider un-embedding the prediction R , i.e., finding which is closest

define signed distance functions , for , as

T

means is closer to than

is closest to when for , or

max

loss function should encourage this, when
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Examples

Boolean, with and

so, when , we’d like ; when , we’d like

one-hot, with ,

so, when , we want max , i.e.,
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Multi-class loss functions
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Loss function for multi-class classification

we need to give the functions of

is how much we dislike predicting when

loss function should be

small when max

larger when max
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Neyman-Pearson loss

Neyman-Pearson loss is
max
otherwise

i.e., zero when is decoded correctly, otherwise

it’s hard to minimize

we do better with a proxy loss that

approximates, or at least captures the flavor of, the Neyman-Pearson loss

is more easily optimized (e.g., is convex, differentiable)
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Multi-class hinge loss

hinge loss is
max

is zero when is correctly un-embedded, with a margin at least one

convex but not differentiable

with quadratic regularization, called multi-class SVM

for Boolean embedding with , , reduces to

usual hinge loss when
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Multi-class hinge loss
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Multi-class logistic loss

logistic loss is

(where we take )

convex and differentiable

called multi-class logistic regression

for Boolean embedding with , , reduces to

usual logistic loss when
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Multi-class logistic loss
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Log-sum-exp function

the function R R

is called the log-sum-exp function

it is a convex differentiable approximation to the max function

sometimes called the softmax function; but that term is also used for other functions

we have
max max
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Example: Iris
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Example: Iris

famous example dataset by Fisher, 1936

measurements of 150 plants, 50 from each of 3 species

iris setosa, iris versicolor, iris virginica

four measurements: sepal length, sepal width, petal length, petal width
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Example: Iris
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Classification with two features

using only sepal_length and sepal_width

one-hot embedding, multi-class logistic loss with for all , trained on all data

confusion matrix
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Classification with all four features

use all four features

one-hot embedding, multi-class logistic loss with for all , trained on all data

confusion matrix
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Summary
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Summary

loss functions for multi-class classification should encourage correct un-embedding, i.e.,

is small when is closest to

is not small when is not closest to

most common losses are multi-class hinge loss and multi-class logistic

associated classifiers are called multi-class SVM and multi-class logistic

both losses are convex, so easy to solve ERM or RERM problems
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