Multi-class classification

» multi-class classification with V = {1,..., K}

» embed the K classes as ¥1,...,¢¥x € R™

» use nearest-neighbor un-embedding, ¥ = argmin, ||§ — 9|2
» use RERM to fit predictor

» validate using Neyman-Pearson metric on test data
» Neyman-Pearson metric is Zj ki Bj
» Ej is rate of mistaking v = j
» k; is our relative distaste for mistaking v = 7

» with k1 = .-+ = kg = 1, reduces to error rate



Signed distances



When is a vector closer to one given vector than another?

» when is § € R™ closer to a than b, where a # b7
» square both sides of ||§ —all2 < ||§ —b||2 to get

2(6—a)"g — [IBll3 + llall < 0 i

» the decision boundary is given by || — al|]2 = || — b]|2, i.e.,

2(b—a)"g — [Bll3 + [lal3 = 0

» this defines a hyperplane H in R™, with normal vector b — a, passing through the midpoint (a + b)/2



Signed distance to the decision boundary

» the signed distance of § to H is 2
. 2(b—a)"g — [|al|3 + 613 *
D(g,a,b) =
(y) ) ) 2||b—a||2 ,
» D(g,a,b) < 0 when § is closer to a than b "

» |D(9,a,b)| is the distance of § to H
» D(g,a,b) = 0 gives the decision boundary

» D(g,a,b) is an affine function of §



Signed distances

» now consider un-embedding the prediction § € R™, i.e., finding which 9; is closest

v

define signed distance functions D;;, for 7 # 7, as

2(9; — i)' 9 — |9l + 1195113

Di;(9) = D(§, %4, ¥5) = 2l — willa

» D;;(§) < 0 means § is closer to 9; than ¥;

g is closest to 1; when D;; < 0 for j # 1, or

v

max Di;(§) < 0
J#i

» loss function should encourage this, when y = 9;



Examples

» Boolean, with ¢y = —1 and ¢¥2 =1
Di2(9) =9,  Daa(9) =—9
so, when y = —1, we'd like § < 0; when y = +1, we'd like g > 0
» one-hot, with ¢; =e;, 7=1,..., K

Y-V .,
Dij = ===, i#j

/2

so, when y = e;, we want max;z; Di;(§) <0, i.e., argmax; §; =1




Multi-class loss functions



Loss function for multi-class classification

» we need to give the K functions of §

» (9, :) is how much we dislike predicting § when y = 1;

» loss function £(§, v;) should be
» small when max;2; D;;(3§) < 0
» larger when max;2; Di;(§) £ 0



Neyman-Pearson loss

» Neyman-Pearson loss is
0  maxjz; Di; <0
k; otherwise

Lg,%:) =

i.e., zero when 9, is decoded correctly, k; otherwise
» it's hard to minimize £(6)

» we do better with a proxy loss that

» approximates, or at least captures the flavor of, the Neyman-Pearson loss

» is more easily optimized (e.g., is convex, differentiable)
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Multi-class hinge loss

» hinge loss is
U3, ¥:) = ki max(1+ Dis(9))+
» (3, ;) is zero when § is correctly un-embedded, with a margin at least one
» convex but not differentiable
» with quadratic regularization, called multi-class SVM
» for Boolean embedding with 91 = —1, 92 = 1, reduces to
09, -1)=k1(1+9)+,  431) =ra(1—9)

usual hinge loss when k1 =1
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Multi-class hinge loss

3

Y2 0

loss £(g, ¥1)
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Multi-class logistic loss

» logistic loss is
£(9,9:) = Kilog <

(where we take Dj; = 0)
» convex and differentiable

» called multi-class logistic regression

> eXp(Dij(ﬁ))>

=1

» for Boolean embedding with ¥; = —1, ¥2 = 1, reduces to

£(g,-1) = k1 log(1 + €?),

usual logistic loss when k1 = 1

£3,1) = ko log(1 +e77)
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Multi-class logistic loss

3

Y2 0

loss £(g, ¥1)

loss £(7, ¥3)
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Log-sum-exp function

» the function f: R™ - R

f(z) = log Z exp(z;)

is called the log-sum-exp function
» it is a convex differentiable approximation to the max function
» sometimes called the softmax function; but that term is also used for other functions

» we have
max{z1,...,zn} < f(z) < max{zi,...,z.} + log(n)
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Example: Iris
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Example: lIris

» famous example dataset by Fisher, 1936
» measurements of 150 plants, 50 from each of 3 species
» iris setosa, iris versicolor, iris virginica

» four measurements: sepal length, sepal width, petal length, petal width
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Example: lIris

sepal length

sepal width

petal length

petal width
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Classification with two features

» using only sepal_length and sepal_width

» one-hot embedding, multi-class logistic loss with k; = 1 for all 7, trained on all data

50 O 0
» confusion matrix C'= | 0 38 13
0 12 37
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Classification with all four features

» use all four features

» one-hot embedding, multi-class logistic loss with x; = for all %, trained on all data

50 O 0
» confusion matrix C=| 0 49 1
0 1 49
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Summary
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Summary

» loss functions for multi-class classification should encourage correct un-embedding,

» £(9,1;) is small when § is closest to ;

» £(9,1:) is not small when ¢ is not closest to ;

» most common losses are multi-class hinge loss and multi-class logistic

» associated classifiers are called multi-class SVM and multi-class logistic

» both losses are convex, so easy to solve ERM or RERM problems
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