Neural networks

» a neural network (NN) is a nonlinear predictor § = gg¢(z) with a particular layered form

» NNs can be thought of as incorporating aspects of feature engineering into the predictor
(and indeed are often used as ‘automatic feature engineering’)

» the parameter dimension p can be very large

» training NNs can be tricky, and take a long time
» NNs can perform very well, especially when there's lots of training data
b it is very hard to interpret a NN predictor § = ge(z) (cf. a linear predictor § = 8" x)

Nomenclature

Neural network layers

» a (feedforward) neural network predictor consists of a composition of functions
7=9°(9°(g"(2)))
(we show three here, but we can have any number)
> written as g = g% 0 g% 0 g* (the symbol o means function composition)
» each ¢* is called a layer; here we have 3 layers

» sometimes called a multi-layer perceptron

Neural network layers

» we can write the predictor § = g*(g%(g'(z))) as
2 =g'(e), =4, §=4°(")
» the vector z* € R% is called the activation or output of layer 1

» layer output dimensions d; need not be the same

» we sometimes write 2° =z, d° =d, and 23 =4, d* =m
(so the predictor input z and predictor output y are also considered activations of layers)

» sometimes visualized as flow graph

0@ @

Layer functions

» each layer g° is a composition of a function k with an affine function

gz = h(e;r(l,zi_l)), i1=1,...,m

b the matrix 6; € R(%—1+1)Xdi is the parameter for layer 1
» an M-layer neural network predictor is parameterized by 8 = (61,...,6) (for M layers)

» the function h : R — R is a scalar activation function, which acts elementwise on a vector argument
(i.e., it is applied to each entry of a vector)

Weights and biases

» we can write the entries of the parameter matrix 6; as
at at

;=1 _.|=12.}

B B1

where a; € R and ﬂ; € R%-1, 50
T ity _ 7| 1| _
61. (112) - 91. |:zz—1 :| -

» and the layer map z* = g*(z*"!) means

. T
2 7 1—1
ag Bi z
+

z i1 i1
Qag Ba, 2

i i il _i— .
2z =h(a;+ B; z Y, j=1,...,ds

a composition of kA with an affine function

» such a function is called a neuron

» o} is called the bias of the neuron; B; are its (input) weights

)

Activation functions

» the activation function A : R — R is nonlinear

» (if it were linear or affine, then gg would be an affine function of z, i.e., a linear predictor)

» common activation functions include
» h(a) = (a)+ = max(a,0), called ReLu (rectified linear unit)

» h(a) =e?/(1 + e%), called sigmoid function

RelLu Sigmoid

h(a)
h(a)

Network depiction

» neural networks are often represented by network diagrams

» each vertex is a component of an activation

» edges are individual weights or parameters

» example above has 3 layers, with d® =2, d* =4, dy =2, ds =1

Example neural network predictor

[0.80 0.10 130 1.20
6, = | —0.50 0.70 0.80 2.90
-1.80 0.20 —1.50 —0.60

T 1.40 1.10
—0.10 —0.90
6= | 050 0.20
—0.40 0.90
| —0.40 —0.10

[0.90'|

63 = | 0.70
0.50J

10

Layer terminology

» in an M layer network, layers 1 to M — 1 are called hidden layers

» layer M is called the output layer

» often for regression, there is no activation function (i.e., h(a) = a) in the output layer
» number of layers M is called the depth of the network

» using large M (say more than 3) is called deep learning

11

Training

12

Training

» for RERM, we minimize over 01, ..., 0, the regularized empirical risk
1 & L ™)
- z r by J
- _Zle(ge(z) v') + Z;r(ﬁ)
1=]:

i

» we do not regularize the bias parameters o]

» common regularizers include sum-squares and ¢4
» the RERM minimization problem is very hard or impossible to solve exactly
» so training algorithms find an approximately optimal solution, using iterative methods we'll see later

» these algorithms can take a long time (e.g., weeks)

13

Example

14

Julia

function nnregression(X, Y, lambda)
d = size(X,2); m = size(Y,2)
model = Chain(
Dense(d, 10, relu),
Dense (10, 10, relu),
Dense(10, m, identity))
data = zip(eachrow(X), eachrow(Y))
reg() = normsquared(model[1].W) + normsquared(model[2].W) + normsquared(model[3].W)
predicty(x) = model(x)
loss(x,y) = normsquared(predicty(x)-y)
cost(x,y) = loss(x,y) + lambdaxreg()
train(cost, Flux.params(model), data)
return model
end
predictall(model,X) = vcat([model(x) for x in eachrow(X)]...)
train_error = rmse(predictall(model,Xtrain), Ytrain)

Neural networks as feature engineering

16

Neural networks versus feature engineering

» NNs have similar form to feature engineering pipeline

» start with z

» carry out a sequence of transforms or mappings
» feature engineering mappings are chosen by hand, have few (or zero) parameters, and are interpretable
» NN mappings have a specific form, with many parameters

» we can think of NNs as doing data-driven automatic feature engineering

17

Pre-trained neural networks

» first train a NN to predict some target

» this is usually done with a very large data set, and takes considerable time

» now fix the parameters in the NN

» use the last hidden layer output 2! € R¥-1 as a set of features for other prediction tasks
» can work well even when the other prediction tasks are quite different from the original one

» called a pre-trained neural network

» examples:

» word2vec maps English words to vectors in R300

» VGG16 maps images to vectors in R100°

18

Summary

19

Summary

» needs lots of data

» training can be tricky and take much time
» not interpretable

» often work well

» incorporate aspects of feature engineering

» can be used to do automatic, data-driven feature engineering

20

