Point and list classifiers



Point classifiers

» a classifier predicts one value 0, given u

» sometimes called a point classifier or point predictor, since it makes just one guess

» in this lecture we'll study classifiers that produce more than just a single guess, given u

2nd’ ®3rd (

» an ordered list of guesses, e.g., 7P, D first, second, third guesses)

» a probability distribution on V, e.g., 15% rain, 85% shine



List classifiers

» a list classifier produces an ordered list, such as 9°°, 92", §%¢

we interpret as our top, second, and third guesses

v

(we show three here, but any number, or a variable number, is possible)

v

2nd

we're happiest when v = 9P, i.e., our top guess is correct, a bit less happy when v = 7°", etc.

v

» common application: recommendation system

» u € U is a user query, v € V is the item a user wants

» list classifier gives our top 10 (ordered) guesses



Nearest-neighbor un-embedding for a list classifier

» we can generalize nearest-neighbor un-embedding to give a list classifier
» start with embedding ¢; = ¢ (v;) € R™

» a predictor guesses §j € R™

» 9'P is the closest representative 1); to 4

» 92 is the second closest representative t; to §, etc.



Probabilistic classifiers



Probability distribution on V

» a probability distribution on V is a function p:V — R
» p(v) is the probability of the value v
» we have p(v) >0 forallveVand ) .\, p(v) =1

» example: with V = {RAIN, SHINE}, p(RAIN) = 0.15, p(SHINE) = 0.85

» can also represent distribution p as a K-vector, with p; = p(v;), i=1,..., K

» in vector notation, p > 0 (elementwise) and 17p =1



Probabilistic classifiers

» a probabilistic classifier produces a probability distribution p on V, given u
> we write this as p = G(u)
» this notation means
» G is a function that takes u € U and returns a distribution (which is itself a function)
» if p = G(u) then p is a function
» we can call the function; p(v;) is the probability that v = v;, when the independent variable is u
» we can also write this as G(u)(v;)

» at any point u € U, calling the predictor G returns the probability distribution p

» we can evaluate p at any v; € V



Point classifier as a probabilistic classifier

v

a point classifier can be considered a special case of a probabilistic classifier

v

if point classifier predicts © € V), associated probabilistic classifier returns p, with

ﬁ(v):{1 ifo=10

0 otherwise

» i.e., we return a distribution that has 100% probability on our point guess 9, and 0% on others

» we'll see this is likely a poor probabilistic classifier



Point classifier from a probabilistic classifier

» conversely, we can construct a point classifier from a probabilistic classifier
» if probabilistic classifier gives p, our point classifier guesses

¥ = argmax p(v)
veV

i.e., the value in V that has highest probability
» called a maximum likelihood classifier

» extends to a list classifier, by giving values sorted by probability, largest to smallest
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Types of probabilistic classifiers

» tree-based probabilistic classifiers

» decision tree with nodes labeled as feature and threshold

» leaves contain distributions p

» nearest-neighbor probabilistic classifiers

» find k nearest neighbors of z to x*

» use empirical distribution of v* among these as p

» later we'll see probabilistic classifiers based on linear or neural network predictors
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k-nearest neighbors based probabilistic classifier

» embed u’ as x' = ¢(u’)
» given u, find k nearest neighbors of © = ¢(u)

» guess p as the empirical distribution of v for these
neighbors

» here k=38

-2
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soft k-nearest neighbors based probabilistic classifier

» embed u’ as x* = ¢(u’)

» let w be the softargmax of the
squared distances between x and
the z*

» w' is the probability of record 4

» let p be the distribution of y
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Performance metrics
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Judging list classifiers

» error rates versus list rank, e.g., on a test data set

» v = 9P (i.e., our top guess is correct) for 68% of samples
» v € {5, 52"} (i.e., true value is among our top two guesses) for 79% of samples

» v € {5tP 52nd 53dY (4 e., the true value is one of our top three guesses) for 85% of samples

» average score on a test data set

» three points for v = 4P (top guess correct)

» two points if v = 92"

3rd

(second guess correct)
» one point if v =¥ (third guess correct)

» zero points if v is not in your list  (no guesses correct)
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Judging a probabilistic classifier

» consider a data pair u, v with prediction p = G(u)
» we'd like to have p(v) = G(u)(v) large, i.e., we assign high probability to the actual value

» for rain / shine prediction example:

» we want p(RAIN) large when v = RAIN

» we want p(RAIN) small when v = SHINE
» there are several ways to formalize this

» we'll focus on most common formalization, based on log-likelihood
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Likelihood

» we have a probabilistic classifier p = G(u), and data set u', ..., u", v*, ..., 0"

» at the ith data point, the predicted probability distribution is p* = G/(u")

» assuming outcomes v’ are independent with distributions $°, probability of observing these outcomes is

prob(v', v, ..., 0" =[5 (")
i=1
» this probability is called the likelihood of p',...,p"; we'd like it to be high

» a fundamental measure of how well the predicted distribution matches the data

» we can compare two probabilistic classifiers G and G by their associated likelihood on test data
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Negative log likelihood

» it's more convenient to work with log probabilities, since the likelihood is a product

» the negative log likelihood of a probabilistic classifier on a data set is
—log prob(vl,vz, .., = —log Hﬁi(vi) =— Z logﬁi(vi)
=1 1=1

» the negative log likelihood is nonnegative; we'd like it to be small

» to compare likelihood on different size data sets (e.g., train and test) we use the average negative log
likelihood

1 < .
_ _ = l AT k3
L - ;:1 og p*(v*)
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Constant probabilistic classifier
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Constant probabilistic classifier

» consider a constant probabilistic classifier
» i.e., distribution p does does not depend on u (which need not even exist)
> given data set v!,...,v", guess distribution p on V

» suppose we choose p to minimize average negative log likelihood
1w ;
= log p(v*
o 2 logp(v')
i=1
(subject to p(v) > 0 forallv € Vand 3 ), p(v) = 1)

» the empirical distribution of the data is

q(v) = fraction of v’ that have value v

» we'll see: the optimal constant probabilistic classifier is p = q

» ...a very sensible prediction of p
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Cross entropy

» we can express average negative log likelihood as

n K
1 L .
—= logp(v') = = q(v;)logp(v;)
n =1 Jj=1
K
» the quantity H(q,p) = — Zq(v]-) log p(v;) is called the cross entropy of p relative to ¢
j=1

K

» compare with the entropy H(p) = — Zp(vk) log p(vi)
k=1
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Kullback-Leibler divergence

For p, q two probability distributions, the Kullback-Leibler divergence is

di(q,p) = H(q,p) — H(q)

» dii(q,p) > 0 for all distributions p, q, because

]~

dri(g,p) = — ) qjlog(p;/a;)

<.
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-
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>

q;(pj/a; —1) =0

<.
Il
-

» can be shown even if some g; =0

because logx < x — 1 for all x > 0
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Constant predictor

» the optimal constant probabistic classifier is the p that minimizes H(q,p), which is

» optimal choice is p = ¢, then H(q,p) = H(q)
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Summary
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Summary

» a point classifier makes a single guess of v, given u
» a probabilistic classifier guesses a probability distribution on V), given u

» we judge a probabilistic classifier by its average log likelihood on test data
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