
Point and list classifiers

2



Point classifiers

↭ a classifier predicts one value v̂, given u

↭ sometimes called a point classifier or point predictor, since it makes just one guess

↭ in this lecture we’ll study classifiers that produce more than just a single guess, given u

↭ an ordered list of guesses, e.g., v̂top, v̂2nd, v̂3rd (first, second, third guesses)

↭ a probability distribution on V, e.g., 15% rain, 85% shine

3



List classifiers

↭ a list classifier produces an ordered list, such as v̂top, v̂2nd, v̂3rd

↭ we interpret as our top, second, and third guesses

↭ (we show three here, but any number, or a variable number, is possible)

↭ we’re happiest when v = v̂
top, i.e., our top guess is correct, a bit less happy when v = v̂

2nd, etc.

↭ common application: recommendation system

↭ u → U is a user query, v → V is the item a user wants

↭ list classifier gives our top 10 (ordered) guesses

4



Nearest-neighbor un-embedding for a list classifier

↭ we can generalize nearest-neighbor un-embedding to give a list classifier

↭ start with embedding ωi = ω(vi) → Rm

↭ a predictor guesses ŷ → Rm

↭ v̂
top is the closest representative ωi to ŷ

↭ v̂
2nd is the second closest representative ωi to ŷ, etc.

5



Probabilistic classifiers

6



Probability distribution on V

↭ a probability distribution on V is a function p : V ↑ R

↭ p(v) is the probability of the value v

↭ we have p(v) ↓ 0 for all v → V and
∑

v→V p(v) = 1

↭ example: with V = {rain, shine}, p(rain) = 0.15, p(shine) = 0.85

↭ can also represent distribution p as a K-vector, with pi = p(vi), i = 1, . . . ,K

↭ in vector notation, p ↓ 0 (elementwise) and 1T
p = 1

7



Probabilistic classifiers

↭ a probabilistic classifier produces a probability distribution p̂ on V, given u

↭ we write this as p̂ = G(u)

↭ this notation means

↭ G is a function that takes u → U and returns a distribution (which is itself a function)

↭ if p̂ = G(u) then p̂ is a function

↭ we can call the function; p̂(vi) is the probability that v = vi, when the independent variable is u

↭ we can also write this as G(u)(vi)

↭ at any point u → U , calling the predictor G returns the probability distribution p̂

↭ we can evaluate p̂ at any vi → V

8



Point classifier as a probabilistic classifier

↭ a point classifier can be considered a special case of a probabilistic classifier

↭ if point classifier predicts v̂ → V, associated probabilistic classifier returns p̂, with

p̂(v) =

{
1 if v = v̂

0 otherwise

↭ i.e., we return a distribution that has 100% probability on our point guess v̂, and 0% on others

↭ we’ll see this is likely a poor probabilistic classifier

9



Point classifier from a probabilistic classifier

↭ conversely, we can construct a point classifier from a probabilistic classifier

↭ if probabilistic classifier gives p̂, our point classifier guesses

v̂ = argmax
v→V

p̂(v)

i.e., the value in V that has highest probability

↭ called a maximum likelihood classifier

↭ extends to a list classifier, by giving values sorted by probability, largest to smallest

10



Types of probabilistic classifiers

↭ tree-based probabilistic classifiers

↭ decision tree with nodes labeled as feature and threshold

↭ leaves contain distributions p̂

↭ nearest-neighbor probabilistic classifiers

↭ find k nearest neighbors of x to xi

↭ use empirical distribution of vi among these as p̂

↭ later we’ll see probabilistic classifiers based on linear or neural network predictors

11



k-nearest neighbors based probabilistic classifier

↭ embed u
i as xi = ε(ui)

↭ given u, find k nearest neighbors of x = ε(u)

↭ guess p̂ as the empirical distribution of v for these
neighbors

↭ here k = 8

12



soft k-nearest neighbors based probabilistic classifier

↭ embed u
i as xi = ε(ui)

↭ let w be the softargmax of the
squared distances between x and
the x

i

↭ w
i is the probability of record i

↭ let p̂ be the distribution of y

13



Performance metrics

14



Judging list classifiers

↭ error rates versus list rank, e.g., on a test data set

↭ v = v̂top (i.e., our top guess is correct) for 68% of samples

↭ v → {v̂top, v̂2nd} (i.e., true value is among our top two guesses) for 79% of samples

↭ v → {v̂top, v̂2nd, v̂3rd} (i.e., the true value is one of our top three guesses) for 85% of samples

↭ average score on a test data set

↭ three points for v = v̂top (top guess correct)

↭ two points if v = v̂2nd (second guess correct)

↭ one point if v = v̂3rd (third guess correct)

↭ zero points if v is not in your list (no guesses correct)

15



Judging a probabilistic classifier

↭ consider a data pair u, v with prediction p̂ = G(u)

↭ we’d like to have p̂(v) = G(u)(v) large, i.e., we assign high probability to the actual value

↭ for rain / shine prediction example:

↭ we want p̂(rain) large when v = rain

↭ we want p̂(rain) small when v = shine

↭ there are several ways to formalize this

↭ we’ll focus on most common formalization, based on log-likelihood

16



Likelihood

↭ we have a probabilistic classifier p̂ = G(u), and data set u1
, . . . , u

n, v1, . . . , vn

↭ at the ith data point, the predicted probability distribution is p̂i = G(ui)

↭ assuming outcomes vi are independent with distributions p̂i, probability of observing these outcomes is

prob(v1, v2, . . . , vn) =
n∏

i=1

p̂
i(vi)

↭ this probability is called the likelihood of p̂1, . . . , p̂n; we’d like it to be high

↭ a fundamental measure of how well the predicted distribution matches the data

↭ we can compare two probabilistic classifiers G and G̃ by their associated likelihood on test data

17



Negative log likelihood

↭ it’s more convenient to work with log probabilities, since the likelihood is a product

↭ the negative log likelihood of a probabilistic classifier on a data set is

↔ log prob(v1, v2, . . . , vn) = ↔ log
n∏

i=1

p̂
i(vi) = ↔

n∑

i=1

log p̂i(vi)

↭ the negative log likelihood is nonnegative; we’d like it to be small

↭ to compare likelihood on di!erent size data sets (e.g., train and test) we use the average negative log
likelihood

L = ↔ 1
n

n∑

i=1

log p̂i(vi)

18



Constant probabilistic classifier

19



Constant probabilistic classifier

↭ consider a constant probabilistic classifier

↭ i.e., distribution p̂ does does not depend on u (which need not even exist)

↭ given data set v1, . . . , vn, guess distribution p̂ on V

↭ suppose we choose p̂ to minimize average negative log likelihood

↔ 1
n

n∑

i=1

log p̂(vi)

(subject to p̂(v) ↓ 0 for all v → V and
∑

v→V p̂(v) = 1)

↭ the empirical distribution of the data is

q(v) = fraction of vj that have value v

↭ we’ll see: the optimal constant probabilistic classifier is p̂ = q

↭ . . . a very sensible prediction of p̂

20



Cross entropy

↭ we can express average negative log likelihood as

↔ 1
n

n∑

i=1

log p̂(vi) = ↔
K∑

j=1

q(vj) log p̂(vj)

↭ the quantity H(q, p̂) = ↔
K∑

j=1

q(vj) log p̂(vj) is called the cross entropy of p̂ relative to q

↭ compare with the entropy H(p) = ↔
K∑

k=1

p(vk) log p(vk)

21



Kullback-Leibler divergence

For p, q two probability distributions, the Kullback-Leibler divergence is

dkl(q, p) = H(q, p)↔H(q)

↭ dkl(q, p) ↓ 0 for all distributions p, q, because

dkl(q, p) = ↔
K∑

j=1

qj log(pj/qj)

↓ ↔
K∑

j=1

qj(pj/qj ↔ 1) = 0 because log x ↗ x↔ 1 for all x > 0

↭ can be shown even if some qj = 0

22



Constant predictor

↭ the optimal constant probabistic classifier is the p̂ that minimizes H(q, p̂), which is

H(q, p̂) = dkl(q, p̂) +H(q)

↭ optimal choice is p̂ = q, then H(q, p̂) = H(q)

23



Summary

24



Summary

↭ a point classifier makes a single guess of v, given u

↭ a probabilistic classifier guesses a probability distribution on V, given u

↭ we judge a probabilistic classifier by its average log likelihood on test data

25


