Point and list classifiers

Point classifiers

- ightharpoonup a classifier predicts *one* value \hat{v} , given u
- ▶ sometimes called a *point classifier* or *point predictor*, since it makes just one guess

- lacktriangleright in this lecture we'll study classifiers that produce more than just a single guess, given u
 - ightharpoonup an ordered list of guesses, e.g., $\hat{v}^{\text{top}},\hat{v}^{\text{2nd}},\hat{v}^{\text{3rd}}$ (first, second, third guesses)
 - ightharpoonup a probability distribution on \mathcal{V} , e.g., 15% rain, 85% shine

List classifiers

- ightharpoonup a list classifier produces an ordered list, such as $\hat{v}^{\text{top}}, \hat{v}^{\text{2nd}}, \hat{v}^{\text{3rd}}$
- ▶ we interpret as our top, second, and third guesses
- ▶ (we show three here, but any number, or a variable number, is possible)
- we're happiest when $v=\hat{v}^{\text{top}}$, *i.e.*, our top guess is correct, a bit less happy when $v=\hat{v}^{\text{2nd}}$, etc.

- common application: recommendation system
 - $lackbox{} u \in \mathcal{U}$ is a user query, $v \in \mathcal{V}$ is the item a user wants
 - ▶ list classifier gives our top 10 (ordered) guesses

4

Nearest-neighbor un-embedding for a list classifier

- ▶ we can generalize nearest-neighbor un-embedding to give a list classifier
- lacksquare start with embedding $\psi_i = \psi(v_i) \in \mathbb{R}^m$
- ightharpoonup a predictor guesses $\hat{y} \in \mathbb{R}^m$
- $lackbox{} \hat{v}^{\mathrm{top}}$ is the closest representative ψ_i to \hat{y}
- ightharpoonup $\hat{v}^{\rm 2nd}$ is the second closest representative ψ_i to \hat{y} , etc.

Probabilistic classifiers

Probability distribution on ${\cal V}$

- lacktriangle a probability distribution on $\mathcal V$ is a function $p:\mathcal V o \mathbb R$
- ightharpoonup p(v) is the probability of the value v
- \blacktriangleright we have $p(v) \geq 0$ for all $v \in \mathcal{V}$ and $\sum_{v \in \mathcal{V}} p(v) = 1$
- ightharpoonup example: with $\mathcal{V}=\{{ t RAIN},{ t SHINE}\}$, $p({ t RAIN})=0.15$, $p({ t SHINE})=0.85$

- lacktriangle can also represent distribution p as a K-vector, with $p_i=p(v_i),\ i=1,\ldots,K$
- ▶ in vector notation, $p \ge 0$ (elementwise) and $\mathbf{1}^T p = 1$

Probabilistic classifiers

- ightharpoonup a probabilistic classifier produces a probability distribution \hat{p} on \mathcal{V} , given u
- ightharpoonup we write this as $\hat{p}=G(u)$
- ▶ this notation means
 - lackbox G is a function that takes $u\in\mathcal{U}$ and returns a distribution (which is itself a function)
 - ▶ if $\hat{p} = G(u)$ then \hat{p} is a function
 - lacktriangle we can call the function; $\hat{p}(v_i)$ is the probability that $v=v_i$, when the independent variable is u
 - lacktriangle we can also write this as $G(u)(v_i)$
- lacktriangle at any point $u \in \mathcal{U}$, calling the predictor G returns the probability distribution \hat{p}
- lacktriangle we can evaluate \hat{p} at any $v_i \in \mathcal{V}$

Point classifier as a probabilistic classifier

- ▶ a point classifier can be considered a special case of a probabilistic classifier
- lacktriangleright if point classifier predicts $\hat{v} \in \mathcal{V}$, associated probabilistic classifier returns \hat{p} , with

$$\hat{p}(v) = \begin{cases} 1 & \text{if } v = \hat{v} \\ 0 & \text{otherwise} \end{cases}$$

- lacktriangleright i.e., we return a distribution that has 100% probability on our point guess \hat{v} , and 0% on others
- we'll see this is likely a poor probabilistic classifier

Point classifier from a probabilistic classifier

- ▶ conversely, we can construct a point classifier from a probabilistic classifier
- ightharpoonup if probabilistic classifier gives \hat{p} , our point classifier guesses

$$\hat{v} = \operatorname*{argmax}_{v \in \mathcal{V}} \hat{p}(v)$$

i.e., the value in $\mathcal V$ that has highest probability

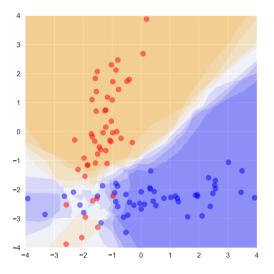
- ▶ called a *maximum likelihood classifier*
- extends to a list classifier, by giving values sorted by probability, largest to smallest

Types of probabilistic classifiers

- tree-based probabilistic classifiers
 - ▶ decision tree with nodes labeled as feature and threshold
 - ightharpoonup leaves contain distributions \hat{p}
- nearest-neighbor probabilistic classifiers
 - ightharpoonup find k nearest neighbors of x to x^i
 - \blacktriangleright use empirical distribution of v^i among these as \hat{p}
- ▶ later we'll see probabilistic classifiers based on linear or neural network predictors

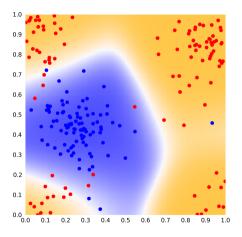
k-nearest neighbors based probabilistic classifier

- ightharpoonup embed u^i as $x^i = \phi(u^i)$
- \blacktriangleright given u , find k nearest neighbors of $x=\phi(u)$
- \blacktriangleright guess \hat{p} as the empirical distribution of v for these neighbors
- ▶ here k = 8



soft k-nearest neighbors based probabilistic classifier

- ightharpoonup embed u^i as $x^i = \phi(u^i)$
- lackbox let w be the softargmax of the squared distances between x and the x^i
- $ightharpoonup w^i$ is the probability of record i



Performance metrics

Judging list classifiers

- ightharpoonup error rates versus list rank, e.g., on a test data set
 - $lackbox{v}=\hat{v}^{\mathrm{top}}$ (i.e., our top guess is correct) for 68% of samples
 - ullet $v\in\{\hat{v}^{
 m top},\hat{v}^{
 m 2nd}\}$ (i.e., true value is among our top two guesses) for 79% of samples
 - ullet $v\in\{\hat{v}^{ ext{top}},\hat{v}^{2 ext{nd}},\hat{v}^{3 ext{rd}}\}$ (i.e., the true value is one of our top three guesses) for 85% of samples

- average score on a test data set
 - lackbox three points for $v=\hat{v}^{\mathsf{top}}$ (top guess correct)
 - lacktriangle two points if $v=\hat{v}^{2\mathrm{nd}}$ (second guess correct)
 - one point if $v = \hat{v}^{3rd}$ (third guess correct)
 - ightharpoonup zero points if v is not in your list (no guesses correct)

Judging a probabilistic classifier

- lacktriangle consider a data pair u,v with prediction $\hat{p}=G(u)$
- lacktriangledown we'd like to have $\hat{p}(v)=G(u)(v)$ large, i.e., we assign high probability to the actual value
- for rain / shine prediction example:
 - ightharpoonup we want $\hat{p}({
 m RAIN})$ large when $v={
 m RAIN}$
 - we want $\hat{p}(\text{RAIN})$ small when v = SHINE
- ▶ there are several ways to formalize this
- ▶ we'll focus on most common formalization, based on *log-likelihood*

Likelihood

- lacktriangle we have a probabilistic classifier $\hat{p}=G(u)$, and data set u^1,\dots,u^n , v^1,\dots,v^n
- lacktriangle at the ith data point, the predicted probability distribution is $\hat{p}^i = G(u^i)$
- lacktriangle assuming outcomes v^i are independent with distributions \hat{p}^i , probability of observing these outcomes is

$$\operatorname{prob}(v^1, v^2, \dots, v^n) = \prod_{i=1}^n \hat{p}^i(v^i)$$

- lacktriangle this probability is called the *likelihood* of $\hat{p}^1,\ldots,\hat{p}^n$; we'd like it to be high
- ▶ a fundamental measure of how well the predicted distribution matches the data
- lacktriangle we can compare two probabilistic classifiers G and $ilde{G}$ by their associated likelihood on test data

Negative log likelihood

- ▶ it's more convenient to work with log probabilities, since the likelihood is a product
- ▶ the *negative log likelihood* of a probabilistic classifier on a data set is

$$-\log\operatorname{prob}(v^1,v^2,\ldots,v^n) = -\log\prod_{i=1}^n \hat{p}^i(v^i) = -\sum_{i=1}^n \log \hat{p}^i(v^i)$$

- ▶ the negative log likelihood is nonnegative; we'd like it to be small
- ightharpoonup to compare likelihood on different size data sets (e.g., train and test) we use the average negative log likelihood

$$\mathcal{L} = -\frac{1}{n} \sum_{i=1}^{n} \log \hat{p}^{i}(v^{i})$$

Constant probabilistic classifier

Constant probabilistic classifier

- consider a constant probabilistic classifier
- \blacktriangleright *i.e.*, distribution \hat{p} does does not depend on u (which need not even exist)
- ightharpoonup given data set v^1, \ldots, v^n , guess distribution \hat{p} on \mathcal{V}
- ightharpoonup suppose we choose \hat{p} to minimize average negative log likelihood

$$-\frac{1}{n}\sum_{i=1}^{n}\log\hat{p}(v^{i})$$

(subject to
$$\hat{p}(v) \geq 0$$
 for all $v \in \mathcal{V}$ and $\sum_{v \in \mathcal{V}} \hat{p}(v) = 1$)

▶ the *empirical distribution* of the data is

$$q(v) = \mbox{fraction of } v^j \mbox{ that have value } v$$

- lacktriangle we'll see: the optimal constant probabilistic classifier is $\hat{p}=q$
- ightharpoonup . . . a very sensible prediction of \hat{p}

Cross entropy

we can express average negative log likelihood as

$$-\frac{1}{n}\sum_{i=1}^{n}\log \hat{p}(v^{i}) = -\sum_{j=1}^{K} q(v_{j})\log \hat{p}(v_{j})$$

- ▶ the quantity $H(q, \hat{p}) = -\sum_{j=1}^{K} q(v_j) \log \hat{p}(v_j)$ is called the *cross entropy* of \hat{p} relative to q
- \blacktriangleright compare with the entropy $H(p) = -\sum_{k=1}^K p(v_k) \log p(v_k)$

Kullback-Leibler divergence

For p,q two probability distributions, the Kullback-Leibler divergence is

$$d_{kl}(q,p) = H(q,p) - H(q)$$

▶ $d_{kl}(q,p) \ge 0$ for all distributions p,q, because

$$d_{kl}(q,p)=-\sum_{j=1}^K q_j\log(p_j/q_j)$$

$$\geq -\sum_{j=1}^K q_j(p_j/q_j-1)=0 \qquad \text{because } \log x \leq x-1 \text{ for all } x>0$$

ightharpoonup can be shown even if some $q_j=0$

Constant predictor

 \blacktriangleright the optimal constant probabistic classifier is the \hat{p} that minimizes $H(q,\hat{p})$, which is

$$H(q, \hat{p}) = d_{kl}(q, \hat{p}) + H(q)$$

 \blacktriangleright optimal choice is $\hat{p}=q$, then $H(q,\hat{p})=H(q)$

Summary

Summary

- lacktriangle a point classifier makes a single guess of v, given u
- lacktriangle a probabilistic classifier guesses a probability distribution on $\mathcal V$, given u
- ▶ we judge a probabilistic classifier by its average log likelihood on test data