Prox-gradient method

Minimizing composite functions

- want to minimize $F(\theta) = f(\theta) + g(\theta)$ (called a *composite function*)
- \blacktriangleright f is differentiable, but g need not be
- ▶ example: minimize $\mathcal{L}(\theta) + \lambda r(\theta)$, with $r(\theta) = ||\theta||_1$
- ▶ we'll see idea of gradient method extends directly to composite functions

Selective linearization

▶ at iteration k, linearize f but not g

$$\hat{F}(heta; heta^k) = f(heta^k) +
abla f(heta^k)^T (heta - heta^k) + g(heta)$$

• want $\hat{F}(\theta; \theta^k)$ small, but with θ near θ^k

▶ choose θ^{k+1} to minimize $\hat{F}(\theta; \theta^k) + \frac{1}{2h^k} ||\theta - \theta^k||_2^2$, with $h^k > 0$

same as minimizing

$$g(heta) + rac{1}{2h^k} || heta - (heta^k - h^k
abla f(heta^k))||^2$$

 \blacktriangleright for many 'simple' functions g, this minimization can be done analytically

▶ this iteration from θ^k to θ^{k+1} is called *prox-gradient step*

Prox-gradient iteration

prox-gradient iteration has two parts:

1. gradient step:
$$heta^{k+1/2}= heta^k-h^k
abla f(heta^k)$$

2. prox step: choose θ^{k+1} to minimize $g(\theta) + \frac{1}{2b^k} ||\theta - \theta^{k+1/2}||_2^2$

 $(heta^{k+1/2} ext{ is an intermediate iterate, in between } heta^k$ and $heta^{k+1})$

▶ step 1 handles differentiable part of objective, *i.e.*, *f*

▶ step 2 handles second part of objective, *i.e.*, g

Proximal operator

▶ given function $q : \mathbf{R}^d \to \mathbf{R}$, and $\kappa > 0$,

$$ext{prox}_{q,\kappa}(v) = \operatorname*{argmin}_{ heta} \left(q(heta) + rac{1}{2\kappa} || heta - v||_2^2
ight)$$

is called the *proximal operator* of q at v, with parameter κ

▶ the prox-gradient step can be expressed as

$$heta^{k+1} = \operatorname{prox}_{g,h^k}(heta^{k+1/2}) = \operatorname{prox}_{g,h^k}(heta^k - h^k
abla f(heta^k))$$

hence the name prox-gradient iteration

How to choose step length

▶ same as for gradient, but using $F(\theta) = f(\theta) + g(\theta)$

a simple scheme:

$$lacksim$$
 if $F(heta^{k+1}) \geq F(heta^k)$, set $h^{k+1} = h^k/2$, $heta^{k+1} = heta^k$ (a rejected step)

- \blacktriangleright if $F(heta^{k+1}) < F(heta^k)$, set $h^{k+1} = 1.2h^k$ (an accepted step)
- ▶ reduce step length by half if it's too long; increase it 20% otherwise

stopping condition for prox-gradient method:

$$\left\|
abla f(heta^{k+1}) - rac{1}{h^k}(heta^{k+1} - heta^{k+1/2})
ight\|_2 \leq \epsilon$$

- ▶ analog of $||\nabla f(\theta^{k+1})||_2 \leq \epsilon$ for gradient method
- $-\frac{1}{h^k}(\theta^{k+1}-\theta^{k+1/2})$ is a surrogate for the gradient for g (which need not be differentiable)

Prox-gradient method summary

choose an initial $heta^1 \in {f R}^d$ and $h^1 > 0 \ (e.g., \ heta^1 = 0, \ h^1 = 1)$

for $k = 1, 2, \ldots, k^{\max}$

- 1. gradient step. $\theta^{k+1/2} = \theta^k h^k \nabla f(\theta^k)$
- 2. prox step. $\theta^{\text{tent}} = \operatorname{argmin}_{\theta} \left(g(\theta) + \frac{1}{2h^k} ||\theta \theta^{k+1/2}||_2^2 \right)$
- $\begin{array}{l} \text{3. if } F(\theta^{\text{tent}}) < F(\theta^k),\\ \text{(a) set } \theta^{k+1} = \theta^{\text{tent}}, \ h^{k+1} = 1.2h^k\\ \text{(b) quit if } \left\| \nabla f(\theta^{k+1}) \frac{1}{h^k}(\theta^{k+1} \theta^{k+1/2}) \right\|_2 \leq \epsilon\\ \text{4. else set } h^k := 0.5h^k \text{ and go to step } 1 \end{array}$

Prox-gradient method convergence

- prox-gradient method finds a stationary point
 - suitably defined for non-differentiable functions
 - assuming some technical conditions hold

- ▶ for *convex problems*
 - prox-gradient method is non-heuristic
 - \blacktriangleright for any starting point $heta^1, \ F(heta^k) o F^\star$ as $k o \infty$

- ▶ for non-convex problems
 - prox-gradient method is *heuristic*
 - \blacktriangleright we can (and often do) have $F(heta^k)
 eq F^\star$

Prox-gradient for regularized ERM

Prox-gradient for sum squares regularizer

▶ let's apply prox-gradient method to $F(\theta) = \mathcal{L}(\theta) + \lambda ||\theta||_2^2$

$$\blacktriangleright f(\theta) = \mathcal{L}(\theta)$$

- $\blacktriangleright \ g(\theta) = \lambda ||\theta||_2^2 = \lambda \theta_1^2 + \dots + \lambda \theta_d^2$
- ▶ in prox step, we need to minimize $\lambda \theta_i^2 + \frac{1}{2h^k} (\theta_i \theta_i^{k+1/2})^2$ over θ_i
- \blacktriangleright solution is $heta_i = rac{1}{1+2\lambda h^k} heta_i^{k+1/2}$
- ▶ so prox step just shrinks the gradient step $\theta^{k+1/2}$ by the factor $\frac{1}{1+2\lambda h^k}$
- prox-gradient iteration:
 - 1. gradient step: $\theta^{k+1/2} = \theta^k h^k \nabla \mathcal{L}(\theta^k)$
 - 2. prox step: $\theta^{k+1} = \frac{1}{1+2\lambda h^k} \theta^{k+1/2}$

Prox-gradient for ℓ_1 regularizer

▶ let's apply prox-gradient method to $F(\theta) = \mathcal{L}(\theta) + \lambda ||\theta||_1$

•
$$f(\theta) = \mathcal{L}(\theta)$$

$$\blacktriangleright \ g(\theta) = \lambda ||\theta||_1 = \lambda |\theta_1| + \dots + \lambda |\theta_d|$$

▶ in prox step, we need to minimize $\lambda |\theta_i| + \frac{1}{2h^k} (\theta_i - \theta_i^{k+1/2})^2$ over θ_i

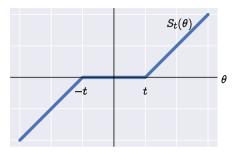
solution is

$$heta_i^{k+1} = \left\{ egin{array}{cc} heta_i^{k+1/2} - 2\lambda h^k & heta_i^{k+1/2} > 2\lambda h^k \ 0 & | heta_i^{k+1/2}| \le 2\lambda h^k \ heta_i^{k+1/2} + 2\lambda h^k & heta_i^{k+1/2} < -2\lambda h^k \end{array}
ight.$$

called soft threshold function

▶ sometimes written as
$$heta_i^{k+1} = S_{2\lambda h^k}(heta_i^{k+1/2}) = {
m sign}(heta_i)(| heta_i| - 2\lambda h^k)_+$$

Soft threshold function



- ▶ prox-gradient iteration for regularized ERM with l_1 regularization:
 - 1. gradient step: $\theta^{k+1/2} = \theta^k h^k \nabla \mathcal{L}(\theta^k)$
 - 2. prox step: $\theta^{k+1} = S_{2\lambda h^k}(\theta_i^{k+1/2})$
- ▶ the soft threshold step shrinks all coefficients
- ▶ and sets the small ones to zero

Prox-gradient step for nonnegative regularizer

▶ let's apply prox-gradient method to $F(\theta) = \mathcal{L}(\theta) + r(\theta)$, where $r(\theta) = 0$ for $\theta \ge 0$, ∞ otherwise

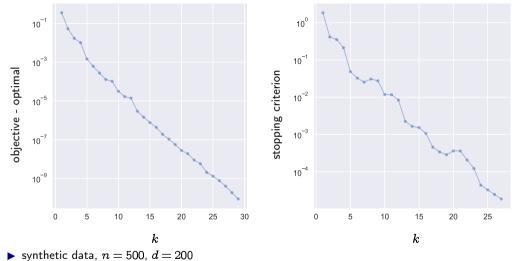
$$\blacktriangleright f(\theta) = \mathcal{L}(\theta)$$

- $\blacktriangleright \ g(\theta) = q(\theta_1) + \cdots + q(\theta_d)$
- ▶ in prox step, we need to minimize $q(\theta_i) + \frac{1}{2h^k}(\theta_i \theta_i^{k+1/2})^2$ over θ_i
- solution is $heta_i = \left(heta_i^{k+1/2}
 ight)_+$
- ▶ so prox step just replaces the gradient step $\theta_i^{k+1/2}$ with its positive part

prox-gradient iteration:

- 1. gradient step: $\theta^{k+1/2} = \theta^k h^k \nabla \mathcal{L}(\theta^k)$
- 2. prox step: $\theta^{k+1} = \left(\theta^{k+1/2}\right)_+$

Example



▶ lasso (square loss, ℓ_1 regularization), $\lambda = 0.1$