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Regularizers and sensitivity

we want to choose to achieve low empirical risk

but also, we’d like the predictor to not be too sensitive

roughly: for near , should be near

sensitive predictors sometimes don’t generalize well

insensitive predictors often generalize well

a regularizer R R is a function that measures the sensitivity of

often predictor sensitivity corresponds to the size of

another interpretation:

the regularizer encodes prior information we have about

specifically, that is small

with either interpretation, we want both and small
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Regularized empirical risk minimization

in RERM we choose to minimize

is the regularization hyper-parameter, used to trade off and

we choose (and ) by validation on a test set

we use a regularizer to achieve better test set performance
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Penalty based regularizers

many common regularizers are given by a penalty function R R

usually for all , and

expresses our displeasure in choosing predictor coefficient

common examples:

sum square, quadratic, Tychonov, , or ridge regularizer: sqr , so

sum absolute, , or lasso regularizer: abs , so

nonnegative regularizer: nn (requires predictor coefficients to be nonnegative)
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Sensitivity of linear predictors
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Feature perturbation

consider a linear predictor T

suppose the feature vector changes to

is the perturbation or change in

we’ll assume that any is possible

is called the feature perturbation set

the change in prediction if changes to is T T T

how big can this be, over all ?

we define the worst case sensitivity as max T

it is evidently a measure of sensitivity
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Worst case sensitivity with perturbation

let’s take (called an -ball)

means the feature vector can change to any within distance

by Cauchy-Schwarz inequality, T

and the choice achieves this maximum change in prediction

so the worst-case sensitivity is

justifies sum square regularizer
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Worst case sensitivity with perturbation

let’s take (called an -ball)

also expressed as , where max is the -norm of

means any component of the feature vector can change by up to

how big can T be, when ?

the choice sign maximizes the change in prediction, i.e.,

if

if

with this choice the change in prediction is

T sign

so the worst case sensitivity is

justifies sum absolute regularizer
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Ridge and lasso regression

use square loss

choosing to minimize is called ridge regression

choosing to minimize is called lasso regression

invented by (Stanford’s) Rob Tibshirani, 1994

widely used in advanced machine learning

unlike ridge regression, there is no formula for the lasso parameter vector

but we can efficiently compute it anyway (since it’s convex)
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Regulization with a constant feature

suppose we have a constant feature

associated predictor coefficient is the offset

since does not change, always

so does not contribute to predictor sensitivity

for this reason it’s common to not regularize the associated coefficient

we modify sum square regularizer to

we modify sum absolute regularizer to
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Sparsifying regularizers

12



Sparse coefficient vector

consider linear predictor T

suppose is sparse, i.e., many of its entries are zero

prediction T does not depend on features for which

this means we select some features to use (i.e., those with )

(possible) practical benefits of sparse :

can improve performance when many regressors are actually irrelevant

makes predictor simpler to interpret

choosing the sparsity pattern of (i.e., which entries are zero) is sometimes called feature selection

there are many ways to carry out feature selection
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Sparse coefficient vectors via regularization

using regularization leads to sparse coefficient vectors

is called a sparsifying regularizer

rough explanation:

for square penalty, once is small, is very small

so incentive for sum square regularizer to make a coefficient smaller decreases once it is small

for absolute penalty, incentive to make smaller keeps up all the way until it’s zero
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Example

artificially generated 50 data points, 200 features, only a few of which are relevant

left hand plots use ridge regression, right hand use lasso
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Example

Tychonov

lasso

sorted at optimal

lasso parameter has only 35 nonzero components; ridge regression has all 200 coefficients nonzero
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Example

Tychonov lasso

Tychonov lasso

choose based on regularization path with test data

keep features corresponding to largest components of and retrain

plots above use most important 7 features identified by lasso
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Even stronger sparsifiers

called regularizer

but you shouldn’t use this term since

is not a norm (see VMLS)

‘stronger’ sparsifier than

but not convex so computing is heuristic
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Example

, , and square root regularization
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Nonnegative regularizer
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Nonegative coefficients

in some cases we know or require that

this means that when increases, so must our prediction

we can think of this constraint as regularization with penalty function

example: is lifespan, measures healthy behavior

with quadratic loss, called nonnegative least squares (NNLS)

common heuristic for nonnegative least squares: use ls (works poorly)
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Example

feature vector

nonnegative means both predictor function is convex (curves up) and nondecreasing

NNLS loss , LS loss , heuristic loss
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How to choose a regularizer

use out-of-sample or cross-validation to choose among regularizers

for each candidate regularizer, choose to minimize test error
(and maybe a little larger . . . )

use the regularizer that gives the best test error
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