Regularizers

Regularizers and sensitivity

- we want to choose θ to achieve low empirical risk $\mathcal{L}(\theta)$
- ▶ but also, we'd like the predictor g_{θ} to not be too sensitive
- ▶ roughly: for x near \tilde{x} , $g_{\theta}(x)$ should be near $g_{\theta}(\tilde{x})$
 - sensitive predictors sometimes don't generalize well
 - insensitive predictors often generalize well
- ▶ a regularizer $r: \mathbb{R}^p \to \mathbb{R}$ is a function that measures the sensitivity of g_{θ}
- \blacktriangleright often predictor sensitivity corresponds to the size of θ
- another interpretation:
 - \blacktriangleright the regularizer encodes *prior information* we have about θ
 - \blacktriangleright specifically, that r(heta) is small
- ▶ with either interpretation, we want both $\mathcal{L}(\theta)$ and $r(\theta)$ small

- in RERM we choose θ to minimize $\mathcal{L}(\theta) + \lambda r(\theta)$
- ▶ $\lambda > 0$ is the regularization hyper-parameter, used to trade off $\mathcal{L}(\theta)$ and $r(\theta)$
- we choose λ (and r) by validation on a test set
- ▶ we use a regularizer to achieve better test set performance

Penalty based regularizers

 \blacktriangleright many common regularizers are given by a penalty function $q: \mathsf{R}
ightarrow \mathsf{R}$

$$r(heta) = q(heta_1) + \dots + q(heta_p)$$

- usually $q(a) \ge 0$ for all a, and q(0) = 0
- ▶ $q(\theta_i)$ expresses our displeasure in choosing predictor coefficient θ_i
- common examples:
 - **>** sum square, quadratic, Tychonov, ℓ_2 , or ridge regularizer: $q^{\text{sqr}}(a) = a^2$, so $r(\theta) = ||\theta||_2^2$
 - \blacktriangleright sum absolute, ℓ_1 , or lasso regularizer: $q^{\mathsf{abs}}(a) = |a|$, so $r(heta) = || heta||_1$

▶ nonnegative regularizer: $q^{nn}(a) = \begin{cases} 0 & a \ge 0 \\ \infty & a < 0 \end{cases}$ (requires predictor coefficients to be nonnegative)

Sensitivity of linear predictors

Feature perturbation

- consider a linear predictor $g_{\theta}(x) = \theta^{\mathsf{T}} x$
- ▶ suppose the feature vector x changes to $\tilde{x} = x + \delta$
- δ is the *perturbation* or change in x
- we'll assume that any $\delta \in \Delta$ is possible
- \blacktriangleright Δ is called the *feature perturbation set*
- ▶ the change in prediction if x changes to $\tilde{x} = x + \delta$ is $|\theta^{\mathsf{T}} \tilde{x} \theta^{\mathsf{T}} x| = |\theta^{\mathsf{T}} \delta|$
- ▶ how big can this be, over all $\delta \in \Delta$?
- we define the *worst case sensitivity* as $\max_{\delta \in \Delta} |\theta^{\mathsf{T}} \delta|$
- ▶ it is evidently a measure of sensitivity

Worst case sensitivity with ℓ_2 perturbation

- ▶ let's take $\Delta = \{\delta \mid ||\delta||_2 \le \epsilon\}$ (called an ℓ_2 -ball)
- \blacktriangleright means the feature vector x can change to any $ilde{x}$ within ℓ_2 distance ϵ
- ▶ by Cauchy-Schwarz inequality, $|\theta^{\mathsf{T}}\delta| \leq ||\theta||_2 ||\delta||_2 \leq \epsilon ||\theta||_2$
- ▶ and the choice $\delta = \frac{\epsilon}{||\theta||_2} \theta$ achieves this maximum change in prediction
- ▶ so the worst-case sensitivity is $\epsilon ||\theta||_2$
- \blacktriangleright justifies sum square regularizer $r(heta) = || heta||_2^2 = heta_1^2 + \dots + heta_d^2$

Worst case sensitivity with ℓ_∞ perturbation

▶ let's take
$$\Delta = \{\delta \mid |\delta_i| \leq \epsilon, \; i = 1, \dots, d\}$$
 (called an ℓ_{∞} -ball)

- ▶ also expressed as $\Delta = \{\delta \mid ||\delta||_{\infty} \leq \epsilon\}$, where $||\delta||_{\infty} = \max_{i=1,\dots,d} |\delta_i|$ is the ℓ_{∞} -norm of δ
- \blacktriangleright means any component of the feature vector x can change by up to ϵ
- ▶ how big can $|\theta^{\mathsf{T}}\delta|$ be, when $\delta \in \Delta$?
- ▶ the choice $\delta_i = \epsilon \operatorname{sign}(\theta_i)$ maximizes the change in prediction, *i.e.*,

•
$$\delta_i = \epsilon$$
 if $heta_i \geq 0$

$$lacksymbol{
ho}~\delta_i=-\epsilon$$
 if $heta_i<$ 0

▶ with this choice the change in prediction is

$$\epsilon |\theta^{\mathsf{T}} \operatorname{sign}(\theta)| = \epsilon (|\theta_1| + \dots + |\theta_d|) = \epsilon ||\theta||_1$$

- ▶ so the worst case sensitivity is $\epsilon ||\theta||_1$
- \blacktriangleright justifies sum absolute regularizer $r(heta) = || heta||_1 = | heta_1| + \dots + | heta_d|$

Ridge and lasso regression

- \blacktriangleright use square loss $\ell(\hat{y},y) = (\hat{y}-y)^2$
- choosing θ to minimize $\mathcal{L}(\theta) + \lambda ||\theta||_2^2$ is called *ridge regression*
- choosing θ to minimize $\mathcal{L}(\theta) + \lambda ||\theta||_1$ is called *lasso regression*
- ▶ invented by (Stanford's) Rob Tibshirani, 1994
- widely used in advanced machine learning
- unlike ridge regression, there is no formula for the lasso parameter vector
- but we can efficiently compute it anyway (since it's convex)

Regulization with a constant feature

- suppose we have a constant feature $x_1 = 1$
- ▶ associated predictor coefficient θ_1 is the offset
- since x_1 does not change, $\delta_1 = 0$ always
- ▶ so θ_1 does not contribute to predictor sensitivity
- **b** for this reason it's common to *not* regularize the associated coefficient θ_1
- \blacktriangleright we modify sum square regularizer to $r(heta) = || heta_{2:d}||_2^2 = heta_2^2 + \dots + heta_d^2$
- ▶ we modify sum absolute regularizer to $r(\theta) = ||\theta_{2:d}||_1 = |\theta_2| + \cdots + |\theta_d|$

Sparsifying regularizers

Sparse coefficient vector

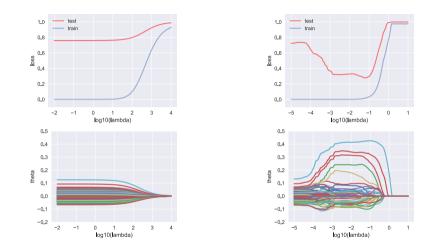
- consider linear predictor $g_{\theta}(x) = \theta^{\mathsf{T}} x$
- **>** suppose θ is sparse, *i.e.*, many of its entries are zero
- ▶ prediction $\theta^T x$ does not depend on features x_i for which $\theta_i = 0$
- ▶ this means we select *some* features to use (*i.e.*, those with $\theta_i \neq 0$)
- (possible) practical benefits of sparse θ :
 - > can improve performance when many regressors are actually irrelevant
 - makes predictor simpler to interpret
- \blacktriangleright choosing the sparsity pattern of θ (*i.e.*, which entries are zero) is sometimes called *feature selection*
- there are many ways to carry out feature selection

using ℓ_1 regularization leads to sparse coefficient vectors

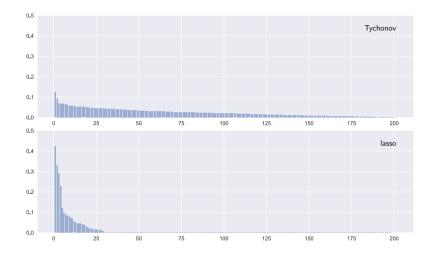
 $r(\theta) = ||\theta||_1$ is called a *sparsifying regularizer*

rough explanation:

- for square penalty, once θ_i is small, θ_i^2 is very small
- > so incentive for sum square regularizer to make a coefficient smaller decreases once it is small
- \blacktriangleright for absolute penalty, incentive to make θ_i smaller keeps up all the way until it's zero

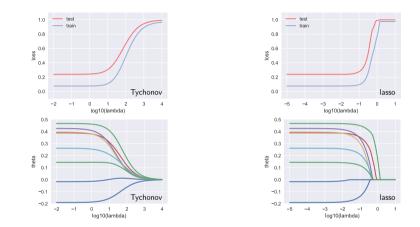


- > artificially generated 50 data points, 200 features, only a few of which are relevant
- ▶ left hand plots use ridge regression, right hand use lasso



\blacktriangleright sorted $|\theta_i|$ at optimal λ

▶ lasso parameter has only 35 nonzero components; ridge regression has all 200 coefficients nonzero



- \blacktriangleright choose λ based on regularization path with test data
- \blacktriangleright keep features corresponding to largest components of θ and *retrain*
- > plots above use most important 7 features identified by lasso

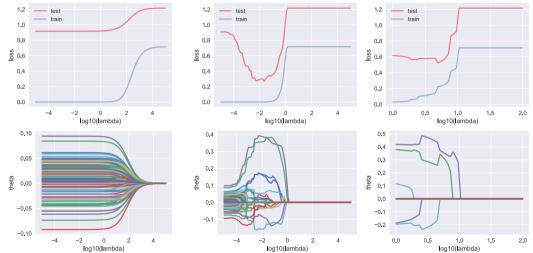
Even stronger sparsifiers

- ▶ $q(a) = |a|^{1/2}$
- ▶ called $\ell_{0.5}$ regularizer
- but you shouldn't use this term since

$$\left(\left| heta_1
ight|^{0.5}+\cdots+\left| heta_d
ight|^{0.5}
ight)^2$$

is not a norm (see VMLS)

- \blacktriangleright 'stronger' sparsifier than ℓ_1
- **b** but not convex so computing θ is heuristic



 \triangleright ℓ_2 , ℓ_1 , and square root regularization

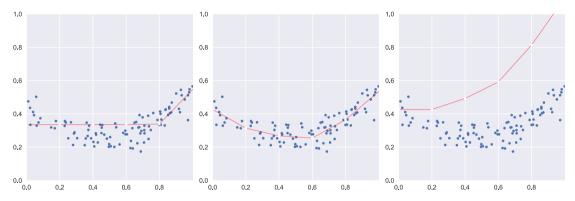
Nonnegative regularizer

Nonegative coefficients

- ▶ in some cases we know or require that $\theta_i \ge 0$
- \blacktriangleright this means that when x_i increases, so must our prediction
- ▶ we can think of this constraint as regularization with penalty function

$$q(a) = egin{cases} 0 & a \geq 0 \ \infty & a < 0 \end{cases}$$

- \blacktriangleright example: y is lifespan, x_i measures healthy behavior i
- ▶ with quadratic loss, called *nonnegative least squares* (NNLS)
- ▶ common heuristic for nonnegative least squares: use $(\theta^{ls})_+$ (works poorly)



• feature vector $x = (1, u, (u - 0.2)_+, \dots, (u - 0.8)_+)$

- **>** nonnegative θ_i means both predictor function is convex (curves up) and nondecreasing
- NNLS loss 0.59, LS loss 0.30, heuristic loss 15.05

use out-of-sample or cross-validation to choose among regularizers

- for each candidate regularizer, choose λ to minimize test error (and maybe a little larger ...)
- ▶ use the regularizer that gives the best test error