Regularizers



Regularizers and sensitivity

» we want to choose 6 to achieve low empirical risk £(6)

» but also, we'd like the predictor gg to not be too sensitive

» roughly: for z near &, go(z) should be near go(%)

p sensitive predictors sometimes don’t generalize well

p insensitive predictors often generalize well
» a regularizer r : RP — R is a function that measures the sensitivity of g

» often predictor sensitivity corresponds to the size of 8

» another interpretation:

» the regularizer encodes prior information we have about 8

» specifically, that »(8) is small

» with either interpretation, we want both £(68) and r(8) small



Regularized empirical risk minimization

» in RERM we choose 8 to minimize £(8) + Ar(6)
» X > 0 is the regularization hyper-parameter, used to trade off £(8) and r(6)
» we choose A (and r) by validation on a test set

» we use a regularizer to achieve better test set performance



Penalty based regularizers

» many common regularizers are given by a penalty function ¢: R = R
r(6) =q(61) + -+ q(65)
» usually g(a) > 0 for all a, and g(0) =0

» g(6:) expresses our displeasure in choosing predictor coefficient 6;

» common examples:

B sum square, quadratic, Tychonov, £2, or ridge regularizer: ¢*"(a) = a2, so r(8) = |6]|2

»so7(6) = [18]]x

» sum absolute, £1, or lasso regularizer: qabs(a) =la

. . 0 >0 . . . .
» nonnegative regularizer: ¢""(a) = { o Z <0 (requires predictor coefficients to be nonnegative)



Sensitivity of linear predictors



Feature perturbation

» consider a linear predictor g¢(z) = 6"z

» suppose the feature vector z changes to £ =z + §

» & is the perturbation or change in z

» we'll assume that any § € A is possible

» A is called the feature perturbation set

» the change in prediction if £ changesto # =z + 6 is |0'% — 0'z| = |6" 4|
» how big can this be, over all § € A?

» we define the worst case sensitivity as maxsea |8 6|

» it is evidently a measure of sensitivity



Worst case sensitivity with £, perturbation

let's take A = {6 | ||6]]2 < €} (called an £2-ball)

v

» means the feature vector z can change to any Z within £, distance €

v

by Cauchy-Schwarz inequality, |878| < ||8]|2]|6]|> < €]|8]|2
» and the choice 6 = WG achieves this maximum change in prediction
» so the worst-case sensitivity is €||6]|2

justifies sum square regularizer 7(8) = ||6]|3 = 63 +--- + 63

v



Worst case sensitivity with £, perturbation

p let'stake A ={6|]6:] <€, t=1,...,d} (called an £c-ball)

» also expressed as A = {6 | ||6||c < €}, where [|6||cc = Mmaxi=1,....a|di| is the £eo-norm of §
» means any component of the feature vector £ can change by up to €

» how big can |878| be, when § € A?

» the choice §; = esign(#;) maximizes the change in prediction, i.e.,

» 5, =€iff; >0
» 5, = —€if8; <0

» with this choice the change in prediction is
€l6” sign(9)] = e(18s] + - - + |6al) = €|l
» so the worst case sensitivity is €||6]|1

» justifies sum absolute regularizer r(8) =||6|| = |61] + - - - + |64]



Ridge and lasso regression

» use square loss £(4,y) = (§ — y)?

» choosing 6 to minimize £(8) + \||9]|3 is called ridge regression

» choosing 6 to minimize L£(8) + A||6||1 is called lasso regression

» invented by (Stanford's) Rob Tibshirani, 1994

» widely used in advanced machine learning

» unlike ridge regression, there is no formula for the lasso parameter vector

» but we can efficiently compute it anyway (since it's convex)
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Regulization with a constant feature

» suppose we have a constant feature z; = 1

» associated predictor coefficient 8; is the offset

» since z; does not change, §; = 0 always

» so 61 does not contribute to predictor sensitivity

» for this reason it's common to not regularize the associated coefficient 6;
» we modify sum square regularizer to r() = ||f2.q||3 = 6% + --- + 62

» we modify sum absolute regularizer to r(8) = ||02:4||1 = |02]| + - - - + |64|
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Sparsifying regularizers
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Sparse coefficient vector

» consider linear predictor go(z) = 8"z

» suppose 6 is sparse, i.e., many of its entries are zero

» prediction 8"z does not depend on features z; for which 6; =0

» this means we select some features to use (i.e., those with 8; # 0)

» (possible) practical benefits of sparse 6:
» can improve performance when many regressors are actually irrelevant

» makes predictor simpler to interpret
» choosing the sparsity pattern of 6 (i.e., which entries are zero) is sometimes called feature selection

» there are many ways to carry out feature selection
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Sparse coefficient vectors via ¢; regularization

using £y regularization leads to sparse coefficient vectors
r(0) = ||0||1 is called a sparsifying regularizer

rough explanation:

» for square penalty, once 8; is small, 87 is very small
» so incentive for sum square regularizer to make a coefficient smaller decreases once it is small

» for absolute penalty, incentive to make 8; smaller keeps up all the way until it's zero
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Example
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» artificially generated 50 data points, 200 features, only a few of which are relevant

» left hand plots use ridge regression, right hand use lasso
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Example
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Example
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» choose )\ based on regularization path with test data
» keep features corresponding to largest components of 8 and retrain

» plots above use most important 7 features identified by lasso

lasso
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Even stronger sparsifiers

> a(a) = [a]*/?
» called £o.5 regularizer
» but you shouldn’t use this term since
(|€1|o.5 T |9d|0'5)2
is not a norm (see VMLS)

» ‘stronger’ sparsifier than ¢,

» but not convex so computing 8 is heuristic
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Example
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Nonnegative regularizer
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Nonegative coefficients

» in some cases we know or require that 6; > 0
» this means that when z; increases, so must our prediction

» we can think of this constraint as regularization with penalty function

0 a>0

g(a) = 4 <0

» example: y is lifespan, z; measures healthy behavior ¢
» with quadratic loss, called nonnegative least squares (NNLS)

» common heuristic for nonnegative least squares: use (6') (works poorly)
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Example
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» feature vector z = (1,u,(u —0.2)4,...,(u —0.8)4)
» nonnegative 8; means both predictor function is convex (curves up) and nondecreasing

» NNLS loss 0.59, LS loss 0.30, heuristic loss 15.05

0.8
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How to choose a regularizer

use out-of-sample or cross-validation to choose among regularizers

» for each candidate regularizer, choose A to minimize test error
(and maybe a little larger .. .)

» use the regularizer that gives the best test error
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