Unsupervised learning



Unsupervised learning

» in supervised learning we deal with pairs of records u, v
» goal is to predict v from u using a prediction model

» the output records v* ‘supervise’ the learning of the model

» in unsupervised learning, we deal with only records u

» goal is to build a data model of u, in order to

» reveal structure in u
» impute missing entries (fields) in u

» detect anomalies

» yes, the first goal is vague ...



Embedding

» as usual we embed raw data u into a feature vector z = ¢(u) € R?
» we then build a data model for the feature vectors

» we un-embed when needed, to go back to the raw vector u

» so we'll work with feature vectors from now on

» (embedded) data set has the form z?,...,z™ € R¢



Data model via loss function

» a data model tells us what the vectors in some data set ‘look like’
» can be expressed quantitatively by an implausibility function or loss function £ : R* — R

» £(z) is how implausible z is as a data point

» £(z) small means z ‘looks like' our data, or is ‘typical’

» {(z) large means z does not look like our data

» if our model is probabilistic, i.e., ¢ comes from a density p(z), we can take £(z) = —logp(z), the
negative log density

» other names for £(z): surprise, perplexity, . ..

» { is often parametrized by a vector or matrix €, and denoted £y(z)



A simple constant model

» data model: z is near a fixed vector 6 € R®
» 6 € R? parametrizes the model
» some implausibility functions:
> fo(z) = llz — 8]12 = 32 (2i — 8:)? (square loss)

» lo(z) =z — 0|1 = Z?:l |z; — 8;| (absolute loss)



k-means data model
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» data model: z is close to one of the k representatives 81, ... ,8; € R*

» quantitatively: for our data points z, the quantity

= mi —6:|3
to(@) = min iz~ 6l

i.e., the minimum distance squared to the representatives, is small

» d x k matrix @ = [0; - - - 6] parametrizes the k-means data model



Role of loss function in supervised and unsupervised learning

» in supervised learning

» a loss function is used to choose a particular predictor from a parameterized family of predictors

p» once we've chosen and validated our predictor, we don't care about the loss function

» in unsupervised learning

» a loss function characterizes what the data looks like

» the loss function is our data model, and is itself our primary goal



Anomaly detector

» a data model allows us to identify suspicious or anomalous feature vectors
» first choose or fit a data model, with loss function £
» find the 99th (say) percentile ¢ of £(z*) on some test data

» flag a feature vector = as anomalous if £(z) >t



Imputing missing entries
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Imputing missing entries

» suppose z has some entries missing, denoted 7 or NA or NaN
» K C{1,...,d} is the set of known entries

» we use our data model to guess or impute the missing entries
» we'll denote the imputed vector as &

» Zi=z,fori e

» imputation example, with £ = {1, 3}

12.1
? .
T = pr— T =
—2.3
?
» we are imputing or guessing £2 = —1.5, £4 = 3.4
» the other entries we know: &1 = z1 = 12.1, £3 = z3 = —2.3

12.1
-1.5

—-2.3
3.4
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Application: Recommendation system

» features are movies; examples are customer ratings or 7 if the customer has not rated that movie

» imputed entries are our guess of what rating the customer would give, if they rated that movie

» we recommend movies to a customer

» that they have not rated

» and for which the imputed rating is large
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Application: Filling in missing features for supervised learning

» setting: data set in supervised learning problem contains some missing features
» common approach: ignore any record that has any feature missing
» in some cases, you'll lose much of your data (and therefore do poorly at fitting a prediction model)

» alternative approach:

» use imputation to fill in (presumably few) missing feature entries

» then proceed with supervised learning
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Application: Detecting anomalous entries

» goal is to flag suspicious or anomalous entries in z

» method based on imputation: for each ¢
» pretend entry z; in z is 7
» find its imputed value &; (based on all other entries of )

» if ¢; and &; are very different, flag ; as anomalous
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Supervised learning as special case of imputation

b suppose we wish to predict y € R™ based on & € R?

» we have some training data z!,...,z", ¢*,...,y"
» define (d + m)-vector & = (z, y)
» build data model for & using training data &,...,&"

» to predict y given z, impute last m entries of & = (z, 7)
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Imputation using a data model

» given partially specified vector £ we minimize over the unknown entries:

minimize  {g(Z)
subjectto Z;=1z;, 1€K

» i.e., impute the unknown entries to minimize the implausibility, subject to the given known entries

» ...a simple and natural method
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Imputing with constant data model

4

z=(?7,2.8) 3

given = with some entries unknown

constant data model with implausibility function £e(z) = ||z — 6||3

we minimize (£ — 6?1)2 + -+ (84— Gd)2 subject to Z; =z; fort € K
soZ;=a;fort € K

for 1 € K, we take Z; = 6;

i.e., for the unknown entries, guess the model parameter entries

vV vV v v v v Vv

example has 8 = (0.79,1.11)



Imputing with k-means data model

» given z with some entries unknown

b k-means data model with implausibility function £s(z) = min;=1,.. & ||z — 6;]|2
» find nearest representative 8; to z, using only known entries

» ie, find j that minimizes )., (z: — (6;):)2

» guess Z; = (6;); fort K

» i.e., for the unknown entries, guess the entries of the closest representative
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Validating imputation

we can validate a proposed data model (and imputation method):

» divide data into a training and a test set
» build data model on the training set
» mask some entries in the vectors in the test set (i.e., replace them with ?)

» impute these entries and evaluate the average error of the imputed values, e.g., the RMSE
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Fitting data models
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Generic fitting method

n

» given data z',...,z" (with no missing entries), and parametrized implausibility function £e(z)

» how do we choose the parameter 67

» average implausibility or empirical loss is
LE) =+ i&;(zi)
n i
i=

» choose 8 to minimize £(8), (possibly) subject to 6 € ©, the set of acceptable parameters

» i.e., choose parameter 8 so the observed data is least implausible
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Fitting a constant model with sum squares loss

» sum squares implausibility function £s(z) = ||z — 6||?
» empirical loss is

1,
L) = ll=* - 6l3
=1

» minimizing over 6 yields

the mean of the data vectors
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Fitting a constant model with sum absolute loss

» sum absolute implausibility function £o(z) = ||z — 6||1

» empirical loss is
1~ i
L(6) = — —"
0= Yl ol
1=

» minimizing over 6 yields
6 = median(z?, ..., z")

the elementwise median of the data vectors
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Fitting a k-means model

» implausibility function £e(z) = minj=1, .« ||z — 6;]||?

» parameter is d X k matrix with columns 61, ..., 0

» empirical loss is
n

1 . i 2
6) == -6,
£(6) n;j:rg_r_w_,knz il

» this is the k-means objective function!

» we can use the k-means algorithm to (approximately) minimize £(0), i.e., fit a k-means model
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k-means algorithm

define the assignment or clustering vector ¢ € R™
c; is the cluster that data vector z* is in (so ¢; € {1,...,k})
to minimize
1
L(6) = — min ||z* — 6
(6)=7 > min lla* = 6|

=1

we minimize 2 37 ||z* — 6e,||* over both c and 8y, .., 8%

we can minimize over c using ¢; = argmin, ||z* — 65|

we can minimize over 61,..., 0 using 6; as the average of {z’ | ¢; =

k-means algorithm alternates between these two steps

it is a heuristic for (approximately) minimizing £(6)

i}
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k-means example

» 200 data points; reserve 40 for test
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k-means example

3.0

25

20
loss

» convergence after 4 iterations

2

iteration

3
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k-means example

3.0
25

2.0

loss

0.5

~&-— training loss
“— testloss
~&-— average rmse imputation error

» fit k-mean data model for k = 1,2,...,50

» validate by removing randomly either u; or us from each record in test set
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