Unsupervised learning

Unsupervised learning

- ▶ in *supervised learning* we deal with pairs of records *u*, *v*
- \blacktriangleright goal is to predict v from u using a prediction model
- \blacktriangleright the output records v^i 'supervise' the learning of the model

- \blacktriangleright in *unsupervised learning*, we deal with only records u
- **b** goal is to *build a data model* of u, in order to
 - reveal structure in u
 - ▶ *impute missing entries* (fields) in *u*
 - detect anomalies
- ▶ yes, the first goal is vague ...

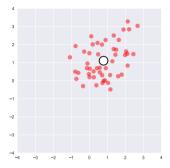
- \blacktriangleright as usual we embed raw data u into a feature vector $x = \phi(u) \in \mathsf{R}^d$
- we then build a data model for the feature vectors
- \blacktriangleright we un-embed when needed, to go back to the raw vector u
- ▶ so we'll work with feature vectors from now on
- \blacktriangleright (embedded) data set has the form $x^1, \ldots, x^n \in \mathsf{R}^d$

Data model via loss function

a data model tells us what the vectors in some data set 'look like'

- \blacktriangleright can be expressed quantitatively by an *implausibility function* or *loss function* ℓ : $\mathbb{R}^d \rightarrow \mathbb{R}$
- $\ell(x)$ is how implausible x is as a data point
 - \blacktriangleright $\ell(x)$ small means x 'looks like' our data, or is 'typical'
 - \triangleright $\ell(x)$ large means x does not look like our data
- ▶ if our model is probabilistic, *i.e.*, x comes from a density p(x), we can take $\ell(x) = -\log p(x)$, the *negative log density*
- other names for $\ell(x)$: surprise, perplexity, ...
- ▶ ℓ is often *parametrized* by a vector or matrix θ , and denoted $\ell_{\theta}(x)$

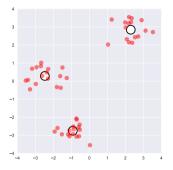
A simple constant model



- ▶ data model: x is near a fixed vector $\theta \in \mathbf{R}^d$
- $\blacktriangleright \ \theta \in \mathbf{R}^d$ parametrizes the model
- ▶ some implausibility functions:

$$\begin{array}{l} \blacktriangleright \ \ell_{\theta}(x) = ||x - \theta||_2^2 = \sum_{i=1}^d (x_i - \theta_i)^2 \text{ (square loss)} \\ \blacktriangleright \ \ell_{\theta}(x) = ||x - \theta||_1 = \sum_{i=1}^d |x_i - \theta_i| \text{ (absolute loss)} \end{array}$$

k-means data model



▶ data model: x is close to one of the k representatives $\theta_1, \ldots, \theta_k \in \mathbf{R}^d$

 \blacktriangleright quantitatively: for our data points x, the quantity

$$\ell_{ heta}(x) = \min_{i=1,...,k} ||x- heta_i||_2^2$$

i.e., the minimum distance squared to the representatives, is small

ightarrow d imes k matrix $heta = [heta_1 \cdots heta_k]$ parametrizes the k-means data model

Role of loss function in supervised and unsupervised learning

in supervised learning

- > a loss function is used to choose a particular predictor from a parameterized family of predictors
- > once we've chosen and validated our predictor, we don't care about the loss function

- in unsupervised learning
 - > a loss function characterizes what the data looks like
 - > the loss function is our data model, and is itself our primary goal

Anomaly detector

- ▶ a data model allows us to identify *suspicious* or *anomalous* feature vectors
- \blacktriangleright first choose or fit a data model, with loss function ℓ
- ▶ find the 99th (say) percentile t of $\ell(x^i)$ on some test data
- \blacktriangleright flag a feature vector x as anomalous if $\ell(x) > t$

Imputing missing entries

Imputing missing entries

- **•** suppose x has some entries missing, denoted ? or NA or NaN
- $\mathcal{K} \subseteq \{1, \ldots, d\}$ is the set of *known entries*
- ▶ we use our data model to guess or *impute* the missing entries
- \blacktriangleright we'll denote the imputed vector as \hat{x}
- $\blacktriangleright \hat{x}_i = x_i ext{ for } i \in \mathcal{K}$
- imputation example, with $\mathcal{K} = \{1, 3\}$

$$x = \begin{bmatrix} 12.1 \\ ? \\ -2.3 \\ ? \end{bmatrix} \implies \hat{x} = \begin{bmatrix} 12.1 \\ -1.5 \\ -2.3 \\ 3.4 \end{bmatrix}$$

- \blacktriangleright we are imputing or guessing $\hat{x}_2 = -1.5$, $\hat{x}_4 = 3.4$
- \blacktriangleright the other entries we know: $\hat{x}_1 = x_1 = 12.1$, $\hat{x}_3 = x_3 = -2.3$

Application: Recommendation system

- ▶ features are movies; examples are customer ratings or ? if the customer has not rated that movie
- ▶ imputed entries are our guess of what rating the customer would give, if they rated that movie
- we recommend movies to a customer
 - that they have not rated
 - ▶ and for which the imputed rating is large

Application: Filling in missing features for supervised learning

- > setting: data set in supervised learning problem contains some missing features
- common approach: ignore any record that has any feature missing
- ▶ in some cases, you'll lose much of your data (and therefore do poorly at fitting a prediction model)
- alternative approach:
 - ▶ use imputation to fill in (presumably few) missing feature entries
 - then proceed with supervised learning

Application: Detecting anomalous entries

- \blacktriangleright goal is to flag suspicious or anomalous *entries* in x
- \blacktriangleright method based on imputation: for each i
 - **>** pretend entry x_i in x is ?
 - **>** find its imputed value \hat{x}_i (based on all other entries of x)
 - \blacktriangleright if x_i and \hat{x}_i are very different, flag x_i as anomalous

Supervised learning as special case of imputation

- \blacktriangleright suppose we wish to predict $y \in \mathsf{R}^m$ based on $x \in \mathsf{R}^d$
- \blacktriangleright we have some training data x^1,\ldots,x^n , y^1,\ldots,y^n
- ▶ define (d+m)-vector $\mathbf{\tilde{x}} = (x,y)$
- \blacktriangleright build data model for $ilde{x}$ using training data $ilde{x}^1,\ldots, ilde{x}^n$
- ▶ to predict y given x, impute last m entries of $\tilde{x} = (x, ?)$

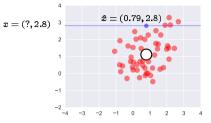
 \blacktriangleright given partially specified vector x we minimize over the unknown entries:

 $\begin{array}{ll} \text{minimize} & \ell_{\theta}(\hat{x}) \\ \text{subject to} & \hat{x}_i = x_i, \quad i \in \mathcal{K} \end{array}$

▶ *i.e.*, impute the unknown entries to minimize the implausibility, subject to the given known entries

...a simple and natural method

Imputing with constant data model



- \blacktriangleright given x with some entries unknown
- \blacktriangleright constant data model with implausibility function $\ell_{ heta}(x) = ||x heta||_2^2$
- \blacktriangleright we minimize $(\hat{x}_1- heta_1)^2+\dots+(\hat{x}_d- heta_d)^2$ subject to $\hat{x}_i=x_i$ for $i\in\mathcal{K}$
- \blacktriangleright so $\hat{x}_i = x_i$ for $i \in \mathcal{K}$
- ▶ for $i \not\in \mathcal{K}$, we take $\hat{x}_i = \theta_i$
- ▶ *i.e.*, for the unknown entries, guess the model parameter entries
- example has $\theta = (0.79, 1.11)$

Imputing with k-means data model

- \blacktriangleright given x with some entries unknown
- ▶ k-means data model with implausibility function $\ell_{\theta}(x) = \min_{i=1,...,k} ||x \theta_i||_2^2$
- ▶ find nearest representative θ_j to x, using only known entries
- *i.e.*, find j that minimizes $\sum_{i \in \mathcal{K}} (x_i (\theta_j)_i)^2$
- ▶ guess $\hat{x}_i = (heta_j)_i$ for $i
 ot\in \mathcal{K}$
- ▶ *i.e.*, for the unknown entries, guess the entries of the closest representative

we can validate a proposed data model (and imputation method):

- divide data into a training and a test set
- build data model on the training set
- ▶ mask some entries in the vectors in the test set (*i.e.*, replace them with ?)
- ▶ impute these entries and evaluate the average error of the imputed values, e.g., the RMSE

Fitting data models

Generic fitting method

- \blacktriangleright given data x^1,\ldots,x^n (with no missing entries), and parametrized implausibility function $\ell_{ heta}(x)$
- **•** how do we choose the parameter θ ?

average implausibility or *empirical loss* is

$$\mathcal{L}(heta) = rac{1}{n}\sum_{i=1}^n \ell_ heta(x^i)$$

- ▶ choose θ to minimize $\mathcal{L}(\theta)$, (possibly) subject to $\theta \in \Theta$, the set of acceptable parameters
- ▶ *i.e.*, choose parameter θ so the observed data is least implausible

Fitting a constant model with sum squares loss

 \blacktriangleright sum squares implausibility function $\ell_{ heta}(x) = ||x - heta||^2$

empirical loss is

$$\mathcal{L}(heta) = rac{1}{n}\sum_{i=1}^n ||x^i - heta||_2^2$$

• minimizing over
$$\theta$$
 yields

$$heta = rac{1}{n}\sum_{i=1}^n x^i$$

the mean of the data vectors

Fitting a constant model with sum absolute loss

 \blacktriangleright sum absolute implausibility function $\ell_{ heta}(x) = ||x - heta||_1$

empirical loss is

$$\mathcal{L}(heta) = rac{1}{n}\sum_{i=1}^n ||x^i - heta||_1$$

 \blacktriangleright minimizing over θ yields

$$heta = \mathsf{median}(x^1, \ldots, x^n)$$

the elementwise median of the data vectors

Fitting a k-means model

- implausibility function $\ell_{\theta}(x) = \min_{j=1,...,k} ||x \theta_j||^2$
- \blacktriangleright parameter is d imes k matrix with columns $heta_1, \dots, heta_k$
- empirical loss is

$$\mathcal{L}(heta) = rac{1}{n} \sum_{i=1}^n \min_{j=1,...,k} ||x^i - heta_j||^2 \, .$$

- ▶ this is the *k*-means objective function!
- \blacktriangleright we can use the k-means algorithm to (approximately) minimize $\mathcal{L}(\theta)$, *i.e.*, fit a k-means model

k-means algorithm

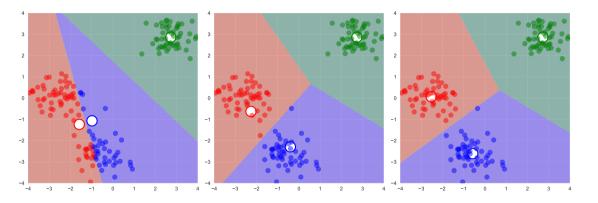
- ▶ define the *assignment* or *clustering* vector $c \in \mathbf{R}^n$
- \blacktriangleright c_i is the cluster that data vector x^i is in (so $c_i \in \{1, \dots, k\}$)
- ▶ to minimize

$$\mathcal{L}(heta) = rac{1}{n} \sum_{i=1}^n \min_{j=1,...,k} ||x^i - heta_j||^2$$

we minimize $rac{1}{n}\sum_{i=1}^n ||x^i- heta_{c_i}||^2$ over both c and $heta_1,\ldots, heta_k$

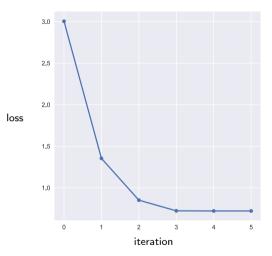
- \blacktriangleright we can minimize over c using $c_i = \mathrm{argmin}_j ||x^i heta_j||^2$
- \blacktriangleright we can minimize over $heta_1,\ldots, heta_k$ using $heta_i$ as the average of $\{x^j \mid c_j=i\}$
- k-means algorithm alternates between these two steps
- ▶ it is a heuristic for (approximately) minimizing $\mathcal{L}(\theta)$

k-means example

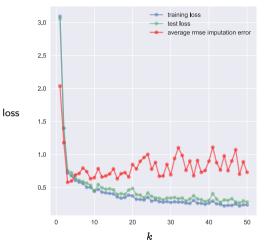


▶ 200 data points; reserve 40 for test

k-means example



k-means example



- fit k-mean data model for $k = 1, 2, \ldots, 50$
- \blacktriangleright validate by removing randomly either u_1 or u_2 from each record in test set