# Prediction performance metrics

#### **Prediction error**

- $\blacktriangleright$  how well does a predictor g work on a data set  $x^1, \ldots, x^n$ ,  $y^1, \ldots, y^n$ ?
- $\blacktriangleright$  that is, how close are the predictions  $\hat{y}^i = g(x^i)$  to the actual outcomes  $y^i$ ?
- ▶ a *performance metric* is a scalar measure of how large the prediction errors are
- ▶ usually the smaller the metric, the better the prediction performance
- > prediction performance metric is sometimes called the *prediction error*

#### **Prediction performance metrics**

• mean square error: 
$$\frac{1}{n}\sum_{i=1}^{n}||\hat{y}^{i}-y^{i}||_{2}^{2}$$
 (for scalar  $y$ ,  $\frac{1}{n}\sum_{i=1}^{n}(\hat{y}^{i}-y^{i})^{2}$ )

▶ root mean square (RMS) error.

$$\left(\frac{1}{n}\sum_{i=1}^n ||\hat{y}^i - y^i||_2^2\right)^{1/2}$$

ightarrow mean absolute error (MAE) (for scalar y):  $rac{1}{n}\sum_{i=1}^n |\hat{y}^i - y^i|$ 

**•** mean fractional error (for scalar, positive  $y, \hat{y}$ ):

$$\frac{1}{n}\sum_{i=1}^n \frac{|\hat{y}^i-y^i|}{\min\{\hat{y}^i,y^i\}}$$

▶ and many others, e.g., median error (for scalar y), median of  $|\hat{y}^i - y^i|$ , i = 1, ..., n

### Comparing predictors using a performance metric

- > prediction performance metric allows us to compare different predictors on a given data set
- example conclusions (on a common data set)
  - 'k-NN with k = 7 does better than k-NN with k = 12'
  - 'my neural network does slightly better than your linear model'
- > conclusions like these depend on the performance metric, so choose it thoughtfully

# Generalization

#### Generalization

- generalization is the ability of a predictor to perform well on unseen data
- 'unseen' means the data was not used to create the prediction model
- can analyze mathematically after making some probabilistic assumptions (which we won't discuss in this course)
- ▶ instead we'll see some practical methods for assessing generalizability

#### In-sample and out-of-sample data

- ▶ we construct a predictor based on *training data* or *in-sample data*
- ▶ we'd like it to work well on *out-of-sample data*, *i.e.*, unseen data
- ▶ if it does, we say the predictor generalizes, i.e., makes good predictions on data it has never seen
- ▶ if it doesn't we say it *fails to generalize* or is *over-fit*

#### **Example: Vehicle-miles traveled**



- we predict y = vehicle-miles traveled from feature x = year
- $\blacktriangleright$  we use 'straight-line' predictor,  $\hat{y} = \theta_1 + \theta_2 x$ , parameters chosen using least squares
- ▶ we train predictor using the 12 (in-sample) blue points, MSE 0.0047
- $\blacktriangleright$  we use this to *predict* y for the 14 (out-of-sample) red points, MSE 0.0051
- ▶ so, this predictor generalizes

# Out-of-sample validation

#### **Out-of-sample validation**

- > a method to simulate how the predictor will perform on unseen data
- key idea: divide the data you have into two sets, train and test
- division of data into training/test sets is often random (80/20 or 90/10 are common splits)
- ▶ use the *training set* data to choose ('train') the predictor
- ▶ use the *test set* or *validation set* data to evaluate the predictor, using your performance metric
- > this is an honest simulation of how the predictor works on unseen data
- ▶ we *hope* that the predictor will work in a similar way on new unseen data
- ▶ this hope is founded on the assumption that future data 'looks like' test data

- ▶ the *test set performance* is what matters
- ▶ the *training set performance* does not matter (but we'd expect it to be good)
- ▶ we usually expect the test performance to be a little worse than the training performance
- ▶ sometimes the test performance is OK, but much worse than the training performance, which is just fine
- > example: training error for 1-NN predictor is zero, but it still can make useful predictions

### Interpreting validation results

- ▶ the *test set performance* is what matters
- ▶ the *training set performance* does not matter
- ▶ top row in the table below are good prediction models

|                  | small train error            | large train error                |
|------------------|------------------------------|----------------------------------|
| small test error | generalizes, performs well   | possible (luck, or fraud?)       |
| large test error | fails to generalize, overfit | generalizes, but performs poorly |

#### Choosing among candidate predictors

- validation is a good method to choose among candidate predictors
- ▶ typically we choose predictor among candidates with smallest test error
- in some cases, might accept a bit larger test error in favor of a 'simpler' predictor (more on this later)

#### Example — train and test data



▶ data  $(x^i, y^i)$  with  $x^i \in \mathsf{R}$ , training data set size 20, test set size 10

#### Example — *k*-NN and polynomial models



### Example — comparison of models

- ▶ we use RMS error as performance metric
- ▶ which is the best prediction model?

|           | k-NN  |       |       | polynomial |        |       |
|-----------|-------|-------|-------|------------|--------|-------|
| RMS error | k=1   | k=2   | k = 3 | affine     | quadr. | cubic |
| train     | 0     | 0.046 | 0.062 | 0.082      | 0.073  | 0.017 |
| test      | 0.101 | 0.083 | 0.106 | 0.110      | 0.086  | 0.025 |

- $\blacktriangleright$  raw data is scalar  $u \in \mathsf{R}$ , scalar v = y
- $\blacktriangleright$  we use feature mapping  $x = \phi(u) = (1, u, \dots, u^{d-1})$  and linear predictor  $g(x) = \theta^{\mathsf{T}} x$
- ▶ predictor is polynomial of u of degree d 1:  $\hat{y} = g(x) = \theta_1 + \theta_2 u + \dots + \theta_d u^{d-1}$
- $\blacktriangleright$  choose  $\theta$  by least squares

#### **Example:** Polynomial fit



- > n = 60 data points
- ▶ predictor for d = 6, d = 12, d = 14
- which predictor is best?
- ▶ degree 13 predictor has smallest training RMS error

#### Choosing degree by validation



- ▶ split 60 data points into 48 train and 12 test points
- evaluate RMS error of each predictor on train and tests sets
- ▶ RMS error on training data set decreases with increasing degree
- but plot of test error suggests best choice of degree is 5

# Cross validation

#### **Cross validation**

> an extension of out-of-sample validation

- divide the data into k folds
- $\blacktriangleright$  for each *i*, fit predictor on all data but fold *i*
- $\blacktriangleright$  evaluate predictor on fold i
- use average test error, across the folds, to judge the method
- > standard deviation of fold test error gives idea of how well model generalizes across folds

- can give some idea of the variability of the test error
- can assess *stability* of the modeling method by looking at predictor parameters found in each fold (are they similar? very different?)

### **Example: Cross validation**



| fold | training loss | test loss | $	heta_1$ | $	heta_2$ |
|------|---------------|-----------|-----------|-----------|
| 1    | 0.0027        | 0.0027    | 0.00334   | 0.998     |
| 2    | 0.0069        | 0.0071    | -0.01095  | 1.010     |
| 3    | 0.0070        | 0.0058    | -0.01248  | 1.021     |
| 4    | 0.0054        | 0.0047    | -0.00959  | 1.017     |
| 5    | 0.0052        | 0.0066    | -0.00691  | 1.018     |

#### And to be even more confident ...

- split data into train:test (say, 80:20) randomly
- train predictor using training data
- evaluate on test data
- repeat above for many different random splits into train:test
- look at histogram of test errors to judge the method
- called repeated train/validation
- plot shows RMS test error for data from previous slide



#### many different 80/20 splits

# Once you've chosen a predictor

### Train / validate / test

- if you evaluate too many models on the test set, you're beginning to learn it, and it's no longer a good simulation of how the model will do on data you've never seen
- ▶ to avoid this, split original data into 3 data sets
  - training data set, used to fit multiple candidate models
  - > validation data set, used to evaluate performance of models
  - > test data set, a pristine, untouched data set reserved to evaluate the model you choose in validation

(unfortunately, some people reverse the meanings of 'test' and 'validation' here)

- some practitioners do this; others don't
- ▶ in this course, we'll just use out-of-sample or 5-fold cross-validation

#### The final predictor

- > you're now satisfied, possibly using train / validation / test, with your choice of predictor
- > one option is to just use that predictor, which was trained on only the training data
- another option is to re-train your chosen predictor on the *whole* original data set, including data previously reserved as test and / or validation
- both practices are common
- example:
  - $\blacktriangleright$  you train k-NN predictors for various values of k
  - $\blacktriangleright$  validation suggests that k = 6 is a good choice
  - **)** the final predictor you use is k-NN with k = 6, using all the original data