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Abstract
This paper proposes a first-order optimization framework
for nonlinear optimal control problems, efficiently han-
dling complex dynamics via projection onto a lifted, ap-
proximately linear constraint manifold constructed using a
physics-informed deep Koopman operator. By circumvent-
ing repeated convex programming and avoiding penalty-
based refinements, the algorithm mitigates sensitivity to
hyperparameters and reduces reliance on domain-specific
knowledge and manual modeling. A physics-informed loss
function preserves physical consistency when mapping
back to the original space, enabling fast convergence
to near-optimal solutions. Experiments demonstrate im-
proved computational efficiency and stability over estab-
lished sequential programming approaches.

1 Introduction
Research on nonlinear optimal control increasingly re-
lies on discretizing continuous problems into convex or
non-convex optimization frameworks, which improve nu-
merical stability, convergence, and constraint handling,
and has been applied extensively [1, 2, 3]. Classical meth-
ods typically use direct collocation or multiple shooting
with interior point methods solving the KKT conditions
via Newton-type methods [4], or Riccati-based techniques
to accelerate computation by leveraging problem struc-
tures [5].
Several approaches have emerged to handle nonlinear

systems. Sequential Convex Programming (SCP) itera-
tively linearizes the problem around a reference trajectory
and solves a series of convex subproblems [6]. While SCP
ensures stability, it can be computationally expensive
and sensitive to hyperparameters associated with trust
regions and virtual control penalties. Other methods, such
as problem-specific formulations, utilizes domain-specific
knowledge and intuition to transform the problem via
variable changes, relaxation, or linearizations [7]. While
efficient in certain cases, these approaches do not scale
well to complex or general problems.

A more recent approach uses first-order optimization
to compute orthogonal projections onto the graph of
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nonlinear dynamics [8]. Unlike SCP, it solves the nonlinear
problem in a single optimization pass without iterative
updates. However, its use of Euler discretization and
decoupled dynamic projections can cause instability or
divergence in strongly nonlinear cases if hyperparameters
are not carefully tuned.
Meanwhile, the Koopman operator has gained atten-

tion as a tool for addressing nonlinearities by embedding
the system in a higher-dimensional latent space where
it can be approximated as linear. Deep Koopman opera-
tors, which uses neural networks to learn the lifting func-
tion [9], have been studied in both linear quadratic [10]
and nonlinear control contexts. Prior works such as [11]
use Koopman-based prediction within a nonlinear MPC
framework [12], apply spectral methods to bilinearize dy-
namics, and [13] propose deep Koopman networks for
trajectory optimization. While effective for forward pre-
diction and planning, they rely on full shooting or iterative
convexification.

Our approach leverages a physics-informed deep Koop-
man operator to enable direct projection onto dynamic
constraints within an ADMM-based first-order optimiza-
tion framework. Unlike prior projection-based methods
for nonlinear control [8], which suffer from the difficulty
of projecting onto nonlinear dynamical constraint sets,
our method lifts dynamics to a linear latent space, mak-
ing projection tractable and improving scalability. To
preserve essential physical constraints when mapping so-
lutions back to the original state space, a physics-informed
loss with higher-order consistency terms is introduced for
learning the lifting function, thereby promoting alignment
with the system’s nonlinear dynamics.

Our approach delivers two central advantages: it avoids
iterative convexification or penalty-based refinement, and
significantly reduces the need for domain-specific tuning
by learning the dynamics through Koopman lifting.
We provide an error bound analysis as a key step to-

ward understanding the method’s practical convergence
behavior and benchmark it against a state-of-the-art SCP
solver in a 6-DoF powered descent guidance problem.
The results show improved computational efficiency and
stability, underscoring the method’s applicability to high-
dimensional systems with strict constraints and complex
nonlinear dynamics.

2 Preliminaries

2.1 Koopman Operator Theory

Koopman Representation of Autonomous Systems
Consider an autonomous nonlinear system, xk+1 = f(xk),
where f : Rnx → Rnx is a nonlinear state transition
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function and k is the discrete-time index. Assume the state
space X ⊆ Rnx is compact and forward invariant under
f , i.e., f(X) ⊆ X. For an observable function ϕ : X → R,
the Koopman operator K is defined as Kϕ = ϕ ◦ f , and
then for any xk ∈ X, it follows that [14]:

Kϕ(xk) = ϕ ◦ f(xk) = ϕ(xk+1). (1)

The Koopman operator acts on an infinite-dimensional
function space F [15, 16], but is approximated in a finite-
dimensional invariant subspace Fnf

⊆ F for practical use.
In this subspace, it can be expressed as,

Kϕj =
∑nf

i=1 Kijϕi, (2)

with the basis function Φ =
[
ϕ1 · · · ϕnf

]
, and A = KT ,

giving Φ(xk+1) = AΦ(xk).

Koopman Representation of Systems with Inputs
Now we consider a nonlinear system with control inputs,
xk+1 = f(xk, uk) where uk ∈ U ⊆ Rnu is the control
input and f : Rnx ×U → Rnx . If Φ(f(·)) ∈ rangeΦ, there
exist a finite-dimensional lifting function Φ and input
matrix B(xk, uk) such that

Φ(xk+1) = AΦ(xk) +B(xk, uk)uk,

as shown in [14]. In practice, the approximation
B(xk, uk) ≈ B simplifies this relation, thus retaining
a similar linear-propagation structure in the lifted space.
This introduces approximation error, as B(xk, uk) may
vary across the state-input space; it remains effective if
B(xk, uk) varies smoothly or the system operates near
nominal conditions.

Deep Koopman Operators Recent work has approx-
imated Koopman lifting functions using deep learning
models [9, 16, 17]. In particular, an autoencoder-based
model was proposed in [9], designed to learn mappings
between the original and the lifted space. These models
are trained by jointly optimizing the encoder-decoder pair
Φ and Φ−1 along with the Koopman matrices A and B,
to minimize reconstruction error, prediction mismatch,
and deviation from linear propagation in the lifted space:

L = LAE + Ldyn + Llin + γ∥W∥2F ,
LAE =

∑Nd

i=1 ∥x(i) − Φ−1(Φ(x(i)))∥2,
Ldyn =

∑Nd

i=1 ∥f(x(i), u(i))− Φ−1(AΦ(x(i)) +Bu(i))∥2,
Llin =

∑Nd

i=1 ∥Φ(f(x(i), u(i)))− (AΦ(x(i)) +Bu(i))∥2,

where x(i) and u(i) are training samples from the data
set of size Nd. The term LAE captures the reconstruction
error of the autoencoder, Ldyn penalizes the prediction
mismatch between the lifted and the original dynamics,
and Llin quantifies the deviation from linear evolution
in the lifted space. The regularizer term ∥W∥2F reduces
overfitting.

2.2 First-Order Optimization

First-order methods solve optimization problems employ-
ing gradient or subgradient information and address con-
straints via proximal operations [18]. The ADMM, a pop-
ular first-order method, introduces auxiliary variables
to handle constraints through projection operations [19].
Given a general optimization problem:

minimizex∈C g(x),

it can be formulated as the following equivalent problem:

minimizex,z g(x) + IC(z)

subject to x = z,
(3)

with the augmented Lagrangian defined by Lρ(x, z, u) =

g(x)+IC(z)+(1/2)ρ ∥x− z + u∥2 , where ρ is the penalty
parameter, u is the scaled dual variable, and IC(·) is the
indicator function (0 for x ∈ C, ∞ otherwise). Problem
(3) is solved by the following iterative updates:

xj+1 = argminx g(x) + (1/2)ρ∥x− zj + uj∥,
zj+1 = ΠC(x

j+1 + uj),

uj+1 = uj + xj+1 − zj+1,

where ΠC(·) denotes the orthogonal projection onto C.
Projections onto nonconvex sets can violate nonex-

pansivity and do not guarantee convergence in general;
however, we can frequently find practically good solutions
in many cases [3, 8]. Although general convergence theory
is incomplete, partial analyses appear in [20, 21, 22]

3 Proposed Method: LiftProj
3.1 ADMM-Based Nonlinear Optimal Control

We consider a finite-horizon discrete-time nonlinear opti-
mal control where the system evolves by xt+1 = f(xt, ut)
and is subject to initial, terminal, and pointwise con-
straints:

minimizex,u g(x1, . . . , xN , u0, . . . , uN−1)

subject to x0 = xinit, xN = xdes,

(xt+1, ut) ∈ Ccon
t ,

xt+1 = f(xt, ut), t ∈ {0, . . . , N − 1},
(4)

where xt and ut are the state and control input at time
step t, and f(xt, ut) denotes discrete-time dynamics, im-
plemented via a 4th-order Runge-Kutta (RK4) scheme

for higher accuracy. A stack notation (a, b) =
[
aT bT

]T
,

with x = (x1, . . . , xN ) and u = (u0, . . . , uN−1), is used
here. The set Ccon

t encodes time-indexed constraints (e.g.,
input bounds or safety limits), and the objective function
g penalizes the entire state-control trajectory.
Letting y = (x, u), the problem becomes:

minimizey g(y)

subject to Cy − d ∈ C (5)

where a matrix C =
[
(Ccon)T (Cdyn)T

]T
and a vec-

tor d =
[
(dcon)T (ddyn)T

]T
are defined such that

Ccony − dcon ∈ Ccon encodes pointwise control and state
constraints at each time step, and Cdyny − ddyn ∈ Cdyn

encodes the discrete dynamics equations. The calligraphic
symbols Cdyn and Ccon denote the corresponding feasi-
ble sets used for expressing projections. Also, we have

C = Ccon ∩ Cdyn, Ccon =
⋂N−1

t=0 Ccon
t , and Cdyn =

{(x, u) | xt+1 = f(xt, ut), for t = 0, . . . , N − 1}.
To enable ADMM updates, we introduce auxiliary vari-

ables s = (scon, sdyn), reformulating (5) as:

minimizey,s g(y) + IC(s)

subject to Cy = d+ s,
(6)

with the augmented Lagrangian Lρ(y, s, λ) = g(y) +



IC(s) +
ρ
2 ∥Cy − d− s+ λ∥22, where ρ is the penalty pa-

rameter, λ is the dual variable, and IC(·) denotes the
indicator function. The optimal solution to Problem (6) is
obtained by iteratively computing the following ADMM
updates:

yj+1 = argminy Lρ(y, s
j , λj),

sj+1 = argmins Lρ(y
j+1, s, λj),

=

[
ΠCcon(Cconyj+1 − dcon + λcon,j)
ΠCdyn(Cdynyj+1 − ddyn + λdyn,j)

]
,

λj+1 = λj + Cyj+1 − d− sj+1.

The key computational difference arises in the projec-
tion step: The projection ΠCcon enforces pointwise bounds
(e.g., thrust limits, gimbal angles, velocity bounds) and is
decomposable across time steps:

ΠCcon(x, u) =
(
ΠCcon

0
(x1, u0), . . . ,ΠCcon

N−1
(xN , uN−1)

)
,

enabling parallel computation and improved efficiency.
In contrast, the projection ΠCdyn enforces inter-

temporal consistency via nonlinear dynamics (e.g., xt+1 =
f(xt, ut)), and is inherently non-decomposable across time
steps. Because it couples variables across adjacent steps,
ΠCdyn requires solving a coupled optimization problem
that spans the entire horizon. As a result, ΠCdyn becomes
the primary computational bottleneck in ADMM itera-
tions. Moreover, computing ΠCdyn for nonlinear f does
not admit a closed-form solution in general, requiring the
following projection subproblem:

minimizex,u ∥x− x̂∥2 + ∥u− û∥2

subject to xt+1 = f(xt, ut), t ∈ {0, . . . , N − 1},
(7)

where (x̂, û) is the point to be projected via ΠCdyn .
This yields an N(nx + nu)-dimensional problem that

must be solved at each ADMM iteration, making (7)
computationally intensive and motivating efficient alter-
natives for ΠCdyn . To address this, LiftProj approximates
this nonlinear dynamics projection within a tractable,
lifted linear space.

3.2 LiftProj Method

The projection ΠCdyn that solves Problem (7) can be recast
in terms of y = (x, u) as follows:

y∗ = ΠCdyn(ŷ) = argminy∈Cdyn ∥y − ŷ∥ , (8)

which computes the Euclidean projection of ŷ = (x̂, û)
onto the feasible set Cdyn in the original space.

Instead of solving (8) directly, this paper proposes the

ŷ = (x̂, û)
1. (x̂, û) 7→ (Φ(x̂), û)

(Φ(x̂), û)

2. (z∗x, z
∗
u)

3. (Φ−1(z∗x), z
∗
u)←[ (z∗x, z∗u)

y∗ y∗
LiftProj

Figure 1: The LiftProj procedures involving three steps.

LiftProj method, which computes the projection in the
lifted linear space. Note that the feasible set in the lifted
space becomes a hyperplane, making projection more
tractable.

minimizez∈Cdyn ∥Φ(x)− Φ(x̂)∥2 + ∥u− û∥2

⇐⇒ minimizez ∥z − ẑ∥2 subject to Ãz = b̃

With Φ(x) = (Φ(x1), . . . ,Φ(xN )) and z = (Φ(x), u),

the linear operators Ã and b̃ describe the dynamics of the
lifted linear system, are derived from the state transition
matrix A and the input matrix B.
As shown in Fig. 1, the LiftProj procedure comprises:
1. Embedding: Map ŷ = (x̂, û) into ẑ = (Φ(x̂), û).
2. Projection: Project ẑ = (Φ(x̂), û) onto the hyperplane

where the lifted linear system dynamics hold, yielding

z∗ = (z∗x, z
∗
u) = P ẑ = ẑ + ÃT (ÃÃT )−1(b̃− Ãẑ),

where P is the orthogonal projection onto Ãz = b̃.
3. Inverse embedding: Apply the inverse mapping Φ−1

to return to the original state and input space:

y∗LiftProj = (x∗
LiftProj, u

∗
LiftProj) = (Φ−1(z∗x), z

∗
u).

The LiftProj result y∗LiftProj may differ from y∗ obtained

via (8) in the original space, i.e., y∗LiftProj ̸= y∗. However,

ADMM tolerates certain level of inexact projection [19],
and similar strategies have been analyzed in various opti-
mization methods [23, 24, 25].

Importantly, the LiftProj error is provably bounded by
the Lipschitz constants of Φ and Φ−1.

Lemma 1 (Error bound of LiftProj). Let y = (x, u) and

define the lifted map Φ̃(y) = (Φ(x), u), where Φ is bi-
Lipschitz continuous with constants LΦ and LΦ−1 . Then
Φ̃ is bi-Lipschitz with constants LΦ̃ = max(LΦ, 1) and
LΦ̃−1 = max(LΦ−1 , 1). Let y∗ = ΠCdyn(y) denote the

exact projection, and let y∗LiftProj = Φ̃−1(P Φ̃(y)) be the
lifted-space projection. Then we have that:

∥y∗LiftProj − y∗∥ ≤ LΦ̃−1LΦ̃∥y − y∗∥.
Proof. By construction, P is the Euclidean projection
onto a hyperplane in the lifted space and is nonexpansive.
Applying the Lipschitz continuity of Φ̃ and its inverse
yields:

∥y∗LiftProj − y∗∥ = ∥Φ̃−1(P Φ̃(y))− Φ̃−1(P Φ̃(y∗))∥
≤ LΦ̃−1∥P Φ̃(y)− P Φ̃(y∗)∥ ≤ LΦ̃−1∥Φ̃(y)− Φ̃(y∗)∥
≤ LΦ̃−1LΦ̃∥y − y∗∥,

as desired.

This result shows that the projection error introduced
by lifting is provably bounded by the Lipschitz constants
of the encoder and the decoder, providing a key step
toward understanding the practical convergence behavior
of the overall ADMM scheme under inexact projections.

3.3 Physics-Informed Deep Koopman Operator

To implement the LiftProj method, we construct a physics-
informed deep Koopman operator using an autoencoder.
LiftProj operates by projecting onto the Koopman

invariant subspace defined by A and B. To ensure consis-
tency with the original nonlinear dynamics, the following



Figure 2: Continuous approximation. Generalization improves
with physics-informed high-order consistency terms.

must hold:

Φ(fRK(xt, ut)) = AΦ(xt) +But, (10)

where fRK denotes the nonlinear propagation imple-
mented by Runge-Kutta integration. The Koopman oper-
ator should provide a continuous approximation to this
condition.
Previous deep Koopman methods have mainly used

data-driven approaches [9, 17] and often fail to generalize
or ensure continuity. To overcome these limitations, we
propose a physics-informed loss function incorporating
higher-order consistency terms, motivated by research
showing improved generalization when physics-informed
terms are integrated into deep learning models [26, 27].
See Fig. 2.
In this paper, the neural network model fNN, which

includes the encoder Φ(xt; θENC), decoder Φ
−1(xt; θDEC),

and matrices A and B, must approximate the nonlinear
propagation function fRK(xt, ut):

fNN(xt, ut; θ) =Φ−1 (AΦ(xt; θENC) +But; θDEC) ,

and additionally, the composition of the encoder and
decoder must approximate the identity: Φ−1 ◦ Φ ≡ I.

We train the model using a composite loss that enforces
these structural equivalences:

θ∗ = argmin
θ

(
LDD
dyn + LDD

AE + LDD
lin + LPI

dyn + LPI
AE + LPI

lin

)
,

with the data-driven (DD) losses given by:

LDD
dyn =

∑Nd

i=1 ∥fNN(x
(i), u(i); θ)− fRK(x

(i), u(i))∥2

LDD
AE =

∑Nd

i=1 ∥Φ−1(Φ(x(i)))− x(i)∥2

LDD
lin =

∑Nd

i=1 ∥Φ(fRK(x
(i), u(i))− (AΦ(x(i)) +Bu(i))∥2

and the physics-informed (PI) losses given by:

LPI
dyn =

∑Nd

i=1 ∥JfNN
(x(i), u(i))− JfRK

(x(i), u(i))∥2F ,
LPI
AE =

∑Nd

i=1 ∥JΦ−1·Φ(x
(i))− I∥2F ,

LPI
lin =

∑Nd

i=1 ∥JΦ◦fNN(x
(i), u(i))− JΦ◦fRK(x

(i), u(i))∥2F ,

where J denotes the Jacobian operator, and x(i) and u(i)

represent randomly sampled collocation points.

3.4 Discussion on Convergence Properties

While LiftProj performs first-order optimization with
projections in a lifted space, the overall problem remains

Table 1: Architecture of the deep Koopman operator.

Encoder Decoder

Layer Type Input Layer 1 Layer 2 Output
Operator FC/GELU FC FC/GELU FC
Dimension 17×1000 1000×50 50×1000 1000×17

Figure 3: Proposed physics-informed deep Koopman operator.

nonconvex due to the nonlinear dynamics and the use of
learned approximate lifting.
LiftProj can be interpreted as a variant of mirror de-

scent, where updates are performed in a transformed
(Koopman-invariant) space and mapped back via the in-
verse encoder. This mirrors mirror descent schemes [28],
which exploit geometric structure through updates in dual
spaces.
A key to convergence in mirror descent is controlling

distortion from the mapping and its inverse. In LiftProj,
the lifting Φ and its inverse Φ−1 are trained to be bi-
Lipschitz continuous, and this ensures that the projection
error of LiftProj can be bounded by a constant multiple
of the residual norm.

To promote this structure, we apply several techniques:
(i) a reconstruction loss to enforce encoder-decoder con-
sistency, (ii) Jacobian-based penalties to regulate local
distortion, and (iii) spectral normalization to control
the Lipschitz constants of the networks (regularizing
the spectral norm of each layer’s weight matrix). These
encourage well-conditioned and stable mappings that
satisfy the assumptions for convergence.

This bounded inexactness is critical. As shown in recent
works [20, 21], ADMM with inexact projections still con-
verges under certain conditions, provided the projection
error remains proportional to the current residual.

While a formal proof is left for future work, our analysis
provides theoretical support for the convergence of Lift-
Proj. Under mild assumptions (e.g., Lipschitz continuity
and low distortion), its inexact ADMM iterations behave
similarly to mirror descent in nonconvex optimization.

4 Numerical Examples
We illustrate the effectiveness of the proposed method on
a powered descent guidance problem for reusable rockets.

Table 2: Initial conditions and simulation parameters.

Param. Value Param. Value

qinit (1, 0, 0, 0) qdes (1, 0, 0, 0)
ωinit (0, 0, 0) ωdes (0, 0, 0)
rinit (1, 1, 0) rdes (0, 0, 0)
vinit (−0.2, 0, 0.1) vdes (−0.1, 0, 0)
g (−1, 0, 0) rT,B (−1, 0, 0)
J diag(1, 1, 1) (mwet, mdry) (2, 0.5)
α 0.05 (Tmin, Tmax) (0.5, 2.6)
tf 5 (θmax, δmax, γgs) (45◦,20◦,10◦)



4.1 6-DoF Powered Descent Guidance

The continuous-time 6-DoF powered descent guidance
problem is formulated as follows [6]:

minimizex(t) −m(tf )

subject to ω̇(t) = J−1(rT,B × TB(t)− ω(t)× Jω(t)),

q̇(t) = (1/2)Ω(ω(t))q(t),

v̇I(t) = CI
B(q(t))T

B(t)/m(t) + gI ,

ṙI(t) = vI(t), ṁ(t) = −α∥TB(t)∥,
ṪB = Ṫcmd, Tlb ≤ ∥TB(t)∥ ≤ Tub,

tan(γgs) r
I
e,n(t) ≤ rIu(t),

cos(θmax) ≤ 1− 2q2,3(t)
T q2,3(t),

cos(δmax)∥TB(t)∥ ≤ TB
u ,

x(0) = xinit, x(tf ) = xdes,
(11)

where x = (q, ω, rI , vI ,m, TB) and Ṫcmd denote quater-
nion, angular rate, position, velocity, mass, thrust, and
thrust rate command, respectively. The formulation cap-
tures coupled nonlinear rotational and translational dy-
namics, along with constraints on thrust magnitude, gim-
bal angle, tilt angle, and glide slope to ensure safe landing.
Refer to [6] for details on variables and physical constants.

4.2 Deep Koopman Operator

The deep Koopman operator architecture is shown in Ta-
ble 1. The model was trained using the ADAM optimizer
on an NVIDIA A100 GPU with a batch size of 512 and a
learning rate of 0.001 decayed by a factor of 0.1. While
LiftProj enables fast optimization via lifted projections, it
incurs a one-time offline cost for Koopman model training.
For Section IV experiments, training the PI model with
10,000 samples took approximately 1.7 hours. Inference
is fast, with the Koopman forward-inverse passes taking
less than 9 ms per ADMM iteration on an Apple M2
processor.

4.3 Optimization Results

We compare LiftProj against SCP using a prediction
horizon N = 40. Scaled initial conditions and parameters
for (11) are listed in Table 2. All algorithms used Python
3.10.13 and the SCP problems were solved with MOSEK.

The SCP implementation used in our experiments fol-
lows [6] and employs the RK4 discretization scheme. Con-
straint drift is controlled with virtual-control penalties
(101–105) and convexification is stabilized with trust-
region weights (10−2–102). Large penalties tighten feasi-
bility but may slow convergence; very small trust regions
have a similar effect. Iterations stop when the virtual-
control norm drops below 2.0× 10−3 and the trust-region
radius below 1.7 × 101. The iteration cap was 20. This
well-established setup matches our problem structure and
is widely used in the literature.
Table 3 reports computation time, propagation error,

and fuel consumption. Propagation error represents the
terminal position error from applying the optimized con-
trol to the full nonlinear dynamics, reflecting solution fi-
delity. The LiftProj with the physics-informed deep Koop-
man model achieved the shortest computation time and
smallest propagation error. The 10k-sample data-driven
model performed worse than the 50k version due to poor

Table 3: Performance comparison of LiftProj with physics-
informed (PI), data-driven (DD) models, and SCP.

Model
Compute
Time [sec]

Propagation
Error

Fuel
Use

LiftProj (PI, 10k) 1.5 5.26×10−3 0.0492
LiftProj (DD, 10k) 20.2 3.15×10−2 0.0421
LiftProj (DD, 50k) 2.6 1.78×10−2 0.0488
SCP 2.4 5.49×10−3 0.0495

Figure 4: Optimization results displaying constraint satisfac-
tion and state/control trajectories.

accuracy and generalizability, resulting in more ADMM
iterations. Still, the physics-informed model remained
effective even with fewer data, showing its robustness.
Fig. 4 shows constraints satisfaction, and Fig. 6 highlights
LiftProj’s significantly lower sensitivity compared to SCP.

4.4 Computational Cost and Hyperparameter
Sensitivity

LiftProj solves the problem in 1.5 seconds, only modestly
faster than SCP’s 2.4 seconds. However, this comparison
significantly understates the practical efficiency of Lift-
Proj. SCP required extensively careful hyperparameter
tuning, while LiftProj required none. Fig. 6 demonstrates
LiftProj’s robustness to parameter variations; among all
SCP runs, only the red box achieves a propagation error
comparable to LiftProj.

The Koopman model is trained once and reused across
multiple instances, making LiftProj ideal for repeated use
in replanning, MPC, or batch policy settings.

Crucially, SCP’s performance deteriorates without tun-
ing, often taking 5-15 times longer or diverging, while
LiftProj remains stable. This robustness makes it attrac-
tive for deployment in uncertain or automated pipelines.

5 Concluding Remarks
In this paper, we proposed LiftProj, a first-order opti-
mization framework for nonlinear optimal control that
performs projection in a lifted, linearized space while
enforcing physical constraints in the original space. Nu-
merical results show that LiftProj achieves performance
competitive with state-of-the-art SCP, offering improved
scalability and parameter robustness. By leveraging a
physics-informed deep Koopman operator, LiftProj re-
duces dependence on problem-specific knowledge and
enhances generalization. This makes it well-suited for
complex, high-dimensional control tasks.

LiftProj has some limitations. Although our error anal-
ysis provides partial support, theoretical convergence is
not guaranteed due to nonconvexity and approximate lift-
ing. Bi-Lipschitz continuity is promoted during training,



Figure 5: Convergence of LiftProj. Iterations terminates once
the squared norm of the primal residual drops below 10−5.

Figure 6: Sensitivity of computation time to hyperparameter
variations. Note that LiftProj (Bottom) shows lower sensitivity
than SCP (Top).

though not strictly enforced. Generalization may degrade
for out-of-sample data, and training can be numerically
expensive. Still, the trained Koopman model is reusable
across different tasks, making LiftProj suitable for re-
peated or real-time control.
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[7] B. Açıkmeşe, J. M. Carson, and L. Blackmore, “Lossless
convexification of nonconvex control bound and point-
ing constraints of the soft landing optimal control prob-
lem,” IEEE Trans. Control Syst. Technol., vol. 21, no. 6,
pp. 2104–2113, 2013.

[8] Y.-J. Kim, J. Choi, J. Choi, and J.-H. Kim, “A first-
order approach for optimal control of nonlinear dynamical
systems,” in Proc. 10th Int. Conf. Control Decis. Inf.
Technol. (CoDIT), pp. 2290–2295, IEEE, 2024.

[9] B. Lusch, J. N. Kutz, and S. L. Brunton, “Deep learning
for universal linear embeddings of nonlinear dynamics,”
Nature Commun., vol. 9, no. 1, p. 4950, 2018.

[10] Y. Han, W. Hao, and U. Vaidya, “Deep learning of Koop-

man representation for control,” in Proc. 59th IEEE Conf.
Decis. Control (CDC), pp. 1890–1895, 2020.

[11] C. Folkestad and J. W. Burdick, “Koopman NMPC:
Koopman-based learning and nonlinear model predictive
control of control-affine systems,” in Proc. IEEE Int.
Conf. Robot. Autom., pp. 7350–7356, 2021.

[12] D. Goswami and D. A. Paley, “Bilinearization, reach-
ability, and optimal control of control-affine nonlinear
systems: A Koopman spectral approach,” IEEE Trans.
Autom. Control, vol. 67, pp. 2715–2728, 2021.

[13] H. Shi and M. Q.-H. Meng, “Deep Koopman operator
with control for nonlinear systems,” IEEE Robot. Autom.
Lett., vol. 7, no. 3, pp. 7700–7707, 2022.
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